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A B S T R A C T   

Ensuring proper use of personal protective equipment (PPE) is essential for improving workplace safety man
agement. The authors present an extensible pose-guided anchoring framework aimed at multi-class PPE 
compliance detection. The overall approach harnesses a pose estimator to detect worker body parts as spatial 
anchors and guide the localization of part attention regions using body-knowledge-based rules considering 
workers' orientations and object scales. Specifically, “part attention regions” are local image patches expecting 
PPEs based on their inherent relationships with body parts, e.g., (head, hardhat) and (upper-body, vest). Finally, 
the shallow CNN-based classifiers can reliably recognize both PPE and non-PPE classes within their corre
sponding part attention regions. Quantitative evaluations tested on the developed construction personal pro
tective equipment dataset (CPPE) show an overall 0.97 and 0.95 F1-score for hardhat and safety vest detection, 
respectively. Comparative studies with existing methods also demonstrate the higher detection accuracy and 
advantageous extensibility of the proposed strategy.   

1. Introduction 

Detecting proper use of personal protective equipment is crucial for 
promoting safety management in construction workplaces. Construction 
sites continue to be among the most accident-prone and potentially 
hazardous workplaces [1]. Excessive risks (e.g., working at height, 
collapse, and manual handling) on the job site frequently expose 
workers to injuries and even fatalities. To prevent accidents, personal 
protective equipment (PPE) aims at protecting the wearer's body against 
job-related hazards. However, several factors, including low awareness, 
discomfort, fatigue, and carelessness, contribute to low compliance with 
PPE use and incorrect handling among workers [2]. Computer vision- 
based methods have shown potential for automated PPE compliance 
detection in past practices, as they permit non-invasive and low-cost 
perception on construction sites. Computer vision-based methods typi
cally detect all workers and PPE components first and then verify if a 
worker uses the PPE based on spatial relationships among the workers 
and the involved PPE instances [3]. 

Although deep neural networks have led to significant progress in 
object detection, detecting individual workers and PPE items at con
struction sites remains a challenge due to the complex backgrounds 
around workers. Most object detection methods tend to scan the whole 

image to localize and classify multi-class objects, which may result in 
false detections on cluttered construction backgrounds. Another chal
lenge in object detection for PPE and workers is the significant varia
tions in object scales resulting from dynamic camera perspectives [4]. 
The shape and size of objects can change noticeably in videos when 
captured by cameras over varying distances. Furthermore, most existing 
methods for inspecting PPE compliance focus only on detecting hard
hats. When verifying multi-class PPE objects, an accurate and robust 
object detection model requires collecting a large-scale domain-specific 
object dataset covering various scenarios for model training, which can 
be costly, tedious, and time-consuming. 

Even after detecting individual objects, whether a worker lacks PPE 
remains to be verified. Many state-of-the-art approaches pair individual 
workers with their PPE by checking if the detected PPE is present in or 
around a worker's detection region [5,6]. However, these methods often 
fail to identify cases of incorrect PPE handling. For example, an 
employee may just hold the hardhat instead of wearing it on the head, as 
shown in Fig. 1a. Significant variations in workers' postures and orien
tations make it hard to enumerate all possible spatial relationships be
tween the workers and PPE proposals. Additionally, these methods 
could hardly handle crowded workspaces where workers could occlude 
each other partially; bounding box representations (i.e., axis-aligned 
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rectangles tightly bounding the object) used by these methods make it 
hard to isolate individual workers in crowded scenarios. The overlaps 
between bounding boxes could lead to matching confusion for individ
ual workers and PPE items (see Fig. 1b). Furthermore, the computational 
complexity of spatial verification expands significantly with the number 
of PPE elements and workers [3]. For example, for two PPE instances 
and two workers, four (2 × 2 = 4) possible combinations need spatial 
verification. However, for two PPE items and five workers, there are ten 
(2 × 5 = 10) pairs of individual instances. The number of such combi
nations will grow exponentially and make the spatial verification of all 
of the instances unmanageable. 

Recently, pose estimation has gained increasing attention in the 
computer vision community. The mission is to identify, localize, and 
track anatomical keypoints (also known as joints) for individuals in 
images or videos. Current pose estimation algorithms based on deep 
learning have achieved impressive results in unconstrained environ
ments, demonstrating the potential for worker detection in complex 
construction environments. Contrasted with bounding-box based ap
proaches for worker detection, human skeletons can provide more fine- 
grained information (e.g., location and visibility) about a person, espe
cially in the occluded conditions (see Fig. 1b). 

Motivated by the success of pose estimation models, the authors 
propose an extensible framework that leverages skeleton-based human 
pose information to improve multi-class PPE detection. First, the authors 
use a pose estimator rather than object detection methods to detect and 
represent individual workers in the form of human skeletons, which help 
isolate each worker from a crowded workspace where severe occlusions 
exist between workers. Empirical observations indicate that workers' 
poses also provide joint-level anchors for guiding the localization of 
different PPE items, e.g., (head, hardhat) and (upper-body, vest). This 
paper then defines human-body-part attention regions (the authors will 
use the term – “part attention regions” for the rest of the paper) that are 
informative image areas spatially correlated with PPE items. This 
attention-guided strategy can produce more accurate PPE detection re
sults for two reasons: (1) the computational resource can be guided to 
concentrate on an informative local region, and (2) the local patch 
appearance can be shared between workers to benefit various back
grounds. To navigate through these image patches, the authors develop 
body knowledge-based rules using detected 2D keypoints to configure 
the location and size of the objects' bounding boxes under various 
workers' orientations. Finally, this study trains two shallow CNN-based 
classifiers to recognize hardhats or vests within cropped part attention 
regions. The efficient inference of non-PPE use workers is to identify 
those areas where the expected PPE is missing without evaluating the 
complex spatial relationships of the instances involved. To evaluate the 
performance of the proposed method, the authors introduce a new 
Construction Personal Protective Equipment (CPPE) Dataset and pub
licly release all data and annotations to encourage future research in the 
area. Extensive experiments verify this new method's potential by 
simultaneously checking for safety violations of non-hardhat use and 
non-vest use within the paper's scope. 

In the remainder of this paper, Section 2 reviews the literature on the 
necessity for PPE use monitoring and computer vision-based PPE 
detection, as well as recent progress in pose estimation. The authors then 
describe the details of the proposed method in Section 3. Section 4 

introduces the constructed CPPE dataset and describes the imple
mentation details. Section 5 then evaluates the individual components of 
the developed method and compares this work against state-of-the-art 
approaches. Section 6 discusses the research limitations, followed by a 
summary of the research findings and future studies in Section 7. 

2. Literature review 

In this section, the authors first discuss the necessity of inspecting 
multiple PPE items in the workplace. Next, the authors review the main 
techniques for PPE detection at construction sites. Finally, since the 
authors recommend a pose-guided anchoring framework for PPE 
detection, a review of emerging human pose estimation methods is 
provided. 

2.1. Importance of personal protective equipment (PPE) in construction 

PPE acts as a fundamental barrier between workers and hazardous 
conditions in workplaces. Depending on the body-protected areas, 
standard PPE classifications and examples include head protection, eye 
and face protection, hand protection, body protection, foot protection, 
and hearing protection [7]. For instance, workers wearing hardhats can 
mitigate the impact of falling objects and avoid injuries from accidental 
bumps to stationary objects. Gloves are essential for shielding hands 
when handling rough or sharp materials. Likewise, the use of reflective 
safety vests could increase workers' visibility in workspaces, lowering 
the likelihood of struck-by accidents, especially in low-light or dark 
conditions. 

Despite the high prevalence of hazardous working conditions, 
compliance with PPE use in workspaces remains low. The Occupational 
Safety and Health Administration (OSHA) stated that the lack of or 
improper use of PPE was one of the most violated OSHA standards 
during the 2019 fiscal year [8]. Statistics from the Bureau of Labor 
Statistics (BLS) revealed that nearly 84% of the workers sustaining head 
injuries from non-hardhat use, only 1% of almost 770 workers experi
encing facial injuries were correctly wearing face protection, and the 
utilization rate of safety shoes was 23% among those workers who suf
fered foot injuries [9]. Companies and employers may also face signif
icant fines of up to $12,934 per violation for PPE non-compliance [10]. 
Therefore, detecting non-compliance with requirements for using multi- 
class PPE is necessary for the workplace. 

2.2. Computer vision-based PPE detection 

There are two main techniques for verifying PPE compliance at 
construction sites: vision-based and sensor-based [5]. Wearable sensor- 
based methods focus on applying external location sensors and then 
analyzing the recorded signals to monitor compliance with the PPE use 
policy. Kelm et al. (2013) [11] introduced a mobile radio-frequency 
identification (RFID) device to determine if the workers' PPE use con
formed to the corresponding safety regulations. Similarly, Li et al. 
(2017) [12] proposed a non-hardhat wear inspection system by 
attaching silicone pressure sensors to the hardhats' sweatbands. Kim 
et al. (2018) [13] used a three-axis accelerometer sensor to detect the 
proper use of safety helmets. Despite their potential to provide prompt 

Fig. 1. Illustration of challenges in PPE detection.  
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alarms, sensor-based methods inevitably cause discomfort to the 
wearers over long working hours. The use of many wearable sensors can 
also lead to additional investment. Therefore, this paper focuses pri
marily on vision-based approaches for verifying PPE compliance in the 
workplace. 

Conventionally, provided with a frame from the surveillance camera 
on construction sites, the vision-based techniques perform PPE compli
ance detection through two stages: object detection and relationship 
verification [3]. The first step is to detect workers and PPE items in the 
images. Previous works relied mainly on handcrafted features (e.g., 
shape, motion, color, and edge) to detect these objects. Wu et al. (2018) 
[14] utilized the histogram of oriented gradients (HOG) descriptor and 
support vector machine (SVM) for worker detection and then applied a 
color-based hybrid descriptor for hardhat identification. Mneymneh 
et al. (2019) [15] identified moving workers using background sub
traction and detected the hardhat in the human head regions with the 
color-based classification algorithm. 

Recently, deep learning techniques, such as Fast/Faster R-CNN 
[16,17], You Only Look Once (YOLO) [18], and Single Shot Detection 
(SSD) [19], have emerged as powerful methods for their exceptional 
machine learning abilities from large-scale labeled datasets. Fang et al. 
(2018a) [20] developed a Faster R-CNN method to detect non-hardhat 
use workers. Similarly, Fang et al. (2018b) [21] also utilized the 
Faster-R-CNN model to identify workers and their harnesses. Wu et al. 
(2019) [22] applied an SSD-based algorithm to identify workers with 
hardhats. Nath et al. (2020) [3] built on the YOLO architecture to verify 
non-compliance with hardhats and safety vests. However, these methods 
generally regard PPE detection as a specific target of object detection. 
Due to the cluttered backgrounds, the large variability of object scale, 
and common occlusions at construction sites, detecting multi-class PPE 
items will demand thousands or tens of thousands of domain-specific 
data samples for training these “data-hungry” methods. 

When performing the relationship verification task, previous studies 
often relied on defining geometric and spatial rules to assess the 
contextual relationships of the detected instances of workers and PPE. 
For example, Park et al. (2015) [5] matched human bodies' windows and 
hardhats with predefined spatial rules. Nath et al. (2020) [3] verified if a 
worker was using a hardhat or vest by checking the Intersection over 
Union (IoU) of the bounding boxes that surround hardhats/vests and 
workers. Tang et al. (2020) [23] further designed a new human-object 
interaction (HOI) recognition method to check PPE compliance by 
detecting potential worker-PPE box pairs. Some researchers also inte
grate geometric rules to verify the proper use of PPE. Chen et al. (2020) 
[24] used the Euclidean distance between bounding boxes of detected 
hardhats and the neck to determine whether everyone uses the hardhat. 
However, the relationship verification's computational complexity ex
pands with the number of PPE instances and workers because possible 
combinations of PPE instances and workers increase exponentially in 
response to those numbers [3]. Furthermore, the spatial relationships 
between workers and PPE may change with the workers' poses and 
orientations. That fact makes it difficult to define all possible verification 
rules. 

Facilitated by recent achievements in face detection, a few re
searchers have attempted to utilize face regions to aid in non-hardhat 
use detection. For example, Du et al. (2011) [25] identified non- 
hardhat use workers by first detecting faces using Haar-like face fea
tures and then checking the presence of a hardhat based on color fea
tures around face regions. Shrestha et al. (2015) [26] also implemented 
an automatic non-hardhat use detection method by identifying the 
workers' faces and then using edge detection to localize hardhats near 
upper-head regions. Shen et al. (2020) [4] developed a face bounding- 
box regression algorithm to determine the candidate regions of safety 
helmets. However, these face-region-based methods fail to detect cases 
where the workers have their backs facing the camera. Additionally, 
most of the existing techniques are exclusively for detecting safety issues 
associated with hardhat use. Many other standard PPE components (e.g., 

safety vests or gloves) can hardly be applied to such face-based schemes. 

2.3. Human pose estimation 

“Human” is a special class in the computer vision community. Pose 
estimation explicitly represents “human” with human skeletons, which 
is a crucial step towards many domain applications, such as activity 
recognition [27], intelligent driver assistance systems [28], sign lan
guage understanding [29], and medical healthcare [30]. Classical pose 
estimation algorithms, such as pictorial structures [31] and deformable 
part models [32], have shown low detection accuracy in unconstrained 
environments. 

With the introduction of the DeepPose network by Toshev and 
Szegedy (2014) [33], deep learning-based models have significantly 
reshaped human pose estimation techniques. The DeepPose network 
formulated the pose estimation as a joint regression problem using 
CNNs, which has yielded drastic improvements over standard bench
marks. Later, Wei et al. (2016) [34] designed a Convolutional Pose 
Machine network with iterative convolutional and pooling layers to 
output a set of heatmaps (also known as confidence maps) for keypoint 
prediction. Instead of regressing to XY locations, heatmaps model the 
joint distributions as Gaussian peaks. Newell et al. (2016) [35] proposed 
a Stacked Hourglass network using successive convolutional layers and 
residual modules. The test results on the FLIC dataset [36] reveal that 
the Stacked Hourglass network has obtained 99% Percentage of Correct 
Keypoints (PCK) accuracy on elbow joints and 97% on wrist joints. Cao 
et al. (2017) [37] developed a real-time OpenPose network by modi
fying Convolutional Pose Machines with the Part Affinity Fields (PAFs), 
which encode both location and orientation information of the limbs to 
aid in pair matching. This method has attained state-of-the-art accuracy 
results on the MS COCO Keypoints Challenge with a detection speed of 
22 frames per second (FPS) on a single Nvidia GTX 1080 Ti machine 
[37]. 

In the construction domain, human pose estimation has gained 
increasing attention in various occupational tasks, such as worker 
behavior analysis [38,39], ergonomic analysis [40], and productivity 
assessments [41]. Liu et al. (2017) [42] applied CNNs to estimate worker 
poses in sequential images within unconstrained and cluttered envi
ronments. The experimental results achieved 91.7% PCKh@0.5 of all 
keypoints localization in the steel beam cutting task. Yan et al. (2017) 
[43] developed an ergonomic posture recognition technique for con
struction hazard prevention in 2D skeleton motion. The test results have 
demonstrated the feasibility of estimating worker poses with 2D ordi
nary cameras in the workplace. Given the success of pose estimation 
algorithms under real-world scenarios, this paper examines how to 
leverage skeleton-based human pose estimation techniques to enhance 
PPE detection accuracy with improved computational efficiency and 
reduced needs for training large-scale image samples. 

3. Methodology 

This section details the pose-guided framework for multi-class PPE 
detection in workspaces. In particular, the authors highlight the tech
nical differences between the existing PPE detection strategies and the 
developed method in this study. To validate that the framework is 
extensible for detecting multiple PPE classes, the authors evaluate safety 
violations of hardhats and safety vests within the scope of this work. 

3.1. Overview of the proposed framework 

Fig. 2 illustrates the overall framework of the proposed method. 
Three parts collectively address the challenges related to efficient and 
effective PPE detection in workspaces: (1) worker pose estimation, (2) 
part attention localization, and (3) binary classification for PPE and non- 
PPE use. The authors first use a pose estimator to detect individual 
workers with occlusions. Part attention localization module utilizes 
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known 2D keypoints to locate informative image patches anticipating 
hardhats and vests. To guide through these part attention regions, the 
authors define body knowledge-based rules to configure the location 
and size of the cropping boxes. Finally, this study develops two CNN- 
based classifiers to determine whether these areas contain hardhats or 
vests. The algorithm then infers non-PPE use cases by identifying those 
anticipated PPE missing from their part attention regions. 

The authors also summarize two widely adopted strategies from the 
existing literature and explain their technical differences with the pro
posed method, as are shown in Fig. 3. In scheme-1, the object detectors 
first identify all workers and PPE instances (in the form of a bounding 
box) in the images, then the spatial relations of workers and PPE are 
verified by evaluating the Intersection over Union (IoU) of identified 
bounding boxes. If these two bounding boxes (PPE box and worker box) 
overlap an intersecting area larger than a given threshold, then the 
worker is classified as correct PPE use [3,5,6]. To further reduce the 
search spaces, recent methods (scheme-2) will first localize workers' 
regions and then identify different PPE types within or around the 
bounding boxes of detected workers [3,14,15]. In contrast, the proposed 
method (scheme-3) uses a pose estimator to detect and represent indi
vidual workers in the form of skeletons. Instead of simply considering 
PPE detection as a specific application of object detection, the authors 
transform the process of PPE detection into a binary classification 
problem. To achieve this goal, the authors integrate the spatial anchors 

of worker poses to predetermine the candidate regions for PPE, e.g., 
(head attention region, hardhat) and (upper-body attention region, 
vest). This optimized strategy can effectively reject distracting back
grounds while improving PPE recognition accuracy within limited 
training samples. 

3.2. Worker pose estimation 

Instead of detecting workers with bounding box representations, the 
authors applied the pose estimation method for fine-grained detection 
and representation of workers' body parts. The pose estimation algo
rithm will identify all keypoints of the workers first and assemble these 
keypoints that belong to the same person in the image, which can pro
vide joint-level information (e.g., location and visibility) about a person, 
especially in crowd scenes. 

This study applies the OpenPose model developed by Cao et al. [37] 
for worker pose estimation for the following reasons: 1) well-established 
implementation for multi-person 2D pose detection with reliable results; 
and 2) real-time performance, which can attain near-real-time estima
tion in real-world conditions regardless of the number of people in any 
given image. To further speed up the detection process, the optimized 
method adopts the MobileNet network [44] rather than the original 
VGG-19 [45] as the feature extractor. The lightweight network uses 
depth-wise separable convolution filters that separate depth and spatial 

Fig. 2. Overview of the pose guided anchoring framework for multi-class PPE detection.  

Fig. 3. Comparison of PPE detection strategies.  
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dimensions to improve computational efficiency. 
Fig. 4 illustrates the pipeline of the lightweight OpenPose model. The 

network uses an iterative two-branch architecture, which simulta
neously refines the pose estimation results over n consecutive stages. 
One branch generates a set of Part Affinity Fields (PAFs) for the pair- 
wise association, which connects all detected body parts to form full- 
body skeletons. PAFs link two associated keypoints of limbs and repre
sent their locations and orientations with a list of 2D vector fields. The 
other branch produces coarse-to-fine heatmaps for part detection. 
Instead of an end-to-end coordinate regression, each heatmap is a 2D 
representation of the probability that a keypoint occurs at each pixel 
location, where a single peak implies its most likely location in the 
image. After that, the greedy inference can parse each heatmap and PAF 
map to assemble the candidate connections into full-body poses for 
multiple workers. 

For model training, the authors compute the ground-truth heatmap 
H based on annotated keypoints. Let xi,j be the ground-truth location of 
the i-th keypoint for the j-th worker in the image. Placing a 2D Gaussian 
distribution centered at xi,j, the probability value at pixel location x in 
individual heatmaps Hi,j is defined as: 

Hi,j(x) = exp
(
−
⃦
⃦x–xi,j‖

2
2

/
σ2) (1) 

Mathematically, the authors model individual workers with a list of 
pose skeletons. The set W = (w1, w2, …, wJ) denotes all the poses of 
individual workers, where J is the total number of workers in the frame. 
For the j-th worker, pi,j = (xi,j, yi,j, vi,j) denotes the predicted 2D co
ordinates of the i-th keypoint and its visibility vi,j. For the human skel
eton model, each pose has a total of I = 18 keypoints, including 1) nose, 
2) neck, 3) right shoulder, 4) right elbow, 5) right wrist, 6) left shoulder, 
7) left elbow, 8) left wrist, 9) right hip, 10) right knee, 11) right ankle, 
12) left hip, 13) left knee, 14) left ankle, 15) right eye, 16) left eye, 17) 
right ear, and 18) left ear. 

The detected keypoints can serve as spatial anchors for guiding 
attention to anticipated body part regions (i.e., part attention regions) 
depending on the types of PPE items, as illustrated in Table 1. For 
example, workers wear hardhats on the head to mitigate head impacts so 
that the keypoints such as the ears and nose can help navigate to the 
head regions. Similarly, shoulders and hips can predetermine potential 
regions for detecting safety vests, which are typically present around 
upper-body areas. Safety glasses protect the eye areas; ankles can 
initially localize potential areas for recognizing safety-toed footwear; 
wrists can guide gloves' detection; and ears are spatially relevant to 
earmuffs. For the scope of this research, the authors focus on detecting 
the proper use of hardhats and safety vests. 

3.3. Part attention localization 

The next step is to integrate the detected 2D keypoints as spatial 
anchors to infer and localize part attention regions, thus effectively 
eliminating the distracting backgrounds and guiding computational re
sources within informative local regions based on the PPE types. 

Fig. 5 shows an overview of the part attention localization module. In 
this work, the authors examine two types of part attention regions: head 

attention regions (Region Type I) and upper body attention regions 
(Region Type II) to recognize expected hardhats and safety vests. 
Mathematically, this study formulates part attention regions as a set of 
bounding boxes R = {R1, R2, …, RK} for the candidate PPE items, where 
K is the total number of part attention regions in the image. To localize 
these part attention regions, the authors define body knowledge-based 
rules to configure the location and size of bounding boxes concerning 
diverse worker poses and orientations. Specifically, the following par
agraphs detail two rules used to assign dynamic head and upper body 
attention regions for PPE recognition. 

(1) Head attention regions for hardhat recognition. 
Head attention regions (Region Type I) are candidate areas in the 

image for hardhat recognition. For each Region Type I, the authors 
select the nose and ears as the reference points to determine the location 
and size of Region Type I for a given worker instance. The redundant 
joints guarantee cropping performance when some keypoints are 
invisible in the image. Considering the workers' relative orientation to 
the camera, the visibility of nose and ears consists of five situations: a) 
ears are visible, but the nose is invisible, b) one ear and nose are visible, 
c) ears and nose are visible, d) one ear is visible while the nose is 
invisible, e) ears and nose are invisible. Fig. 6 shows these cases of 
visible joints for defining head attention regions. 

Let xle, yle, xre, yre, xn, yn, xneck, yneck denote the coordinates of the left 
ear, right ear, nose, and neck, respectively. vle, vre, vn ∈{0,1} represent the 
visibility of the left ear, right ear, and nose in the same way. 

Case 1-A - ears are visible. In this case, workers present with the 
back view. This study utilizes oriented bounding boxes to represent 
Region Type I in the format of (x1, y1, l1, θ1), where x1, y1 denote the 
midpoint coordinates on the bottom edge, l1 is the side length, and θ1 is 
rotation angle. In this study, the authors used oriented region proposals 
rather than horizontal bounding boxes to localize part attention regions. 
These rotated image patches with additional angle parameters are 
generated adaptively according to the workers' orientations, which 
helps describe their locations and contents more accurately than axis- 
aligned boxes. The rules determine the expected regions of hardhats as 
follows: 

x1 = (xle + xre)/2  

y1 = (yle + yre)/2  

l1 = ra
[
(xle–xre)

2
+ (yle–yre)

2 ]1/2  

θ1 = tan− 1[(yle–yre)/(xle–xre) ] (2) 

Fig. 4. Architecture of the OpenPose network.  

Table 1 
Spatial anchors for localizing PPE items.  

PPE items Body protection Spatial anchors 

hardhat head ears; nose 
safety vest body shoulders; hips 
safety goggles eyes eyes 
safety-toe footwear feet ankles 
gloves hands wrists 
earmuffs hearing ears  
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where ra is a hyperparameter to ensure that the local window scales 
with the workers' size. 

Case 1-B - one ear and nose are visible. In this case, workers 
appear in a side view. Similarly, the rules segment the expected regions 
as follows: 

x2 = xn  

y2 = yn  

l2 = rb
[
(xn–xneck)

2
+ (yn–yneck)

2 ]1/2  

θ2 = tan− 1[(ylevle + yrevre–yn)/(xlevle + xrevre–xn) ] (3) 

where x2, y2 denote the corner coordinates on the bottom edge, l2 is 
the side length, and θ2 is rotation angle rb is a hyperparameter to 
regulate the proper size of Region Type I. 

Case 1-C - ears and nose are visible. In this case, the worker poses 
are present in a front view. The rule for calculating the oriented box is 
the same as Case 1-A. 

Case 1-D - one ear is visible while the nose is invisible. Since no 
reference point is visible in the regions, the rotation angle θ4 = 0 in this 
case. The rules for localizing the head areas are as follows: 

x4 = xlevle + xrevre (4)  

y4 = ylevle + yrevre  

l4 = rd
[
(xlevle + xrevre–xneck)

2
+ (ylevle + yrevre–yneck)

2 ]1/2 

where x4, y4 denote the corner coordinates on the bottom edge, and 
l2 is the side length. rd is a hyperparameter to determine the proper size 

of Region Type I. 
Case 1-E - ears and nose are invisible. Severe head occlusions can 

lead to head invisible cases, where none of the keypoints within the head 
regions are visible in the image. 

(2) Upper-body attention regions for vest recognition. 
Upper-body attention regions (Region Type II) are potential regions 

that expect the existence of safety vests. For Region Type II, the authors 
select shoulders and hips as the reference points to determine the location 
and size of Region Type II. Considering their orientation to the camera, 
the visibility of the shoulders and hips contains five cases: a) shoulders 
and hips are visible, b) shoulders are visible while hips are invisible, c) 
shoulders and one hip are visible, d) one shoulder is visible, and e) 
shoulders are invisible. Fig. 7 illustrates these possible cases of worker 
poses for defining upper-body attention regions. 

Let xls, yls, xrs, yrs, xlh, ylh, xrh, yrh denote the coordinates of the left 
shoulder, right shoulder, left hip, and right hip, respectively. vls, vrs, vlh, and 
vrh represent the visibility of the left shoulder, right shoulder, left hip, and 
right hip, respectively. 

Case 2-A -s houlders and hips are visible. The authors represent 
the oriented bounding boxes in the format of (x1, y1, w1, h1, θ1), where 
x1, y1, w1, h1, θ1 denote the midpoint coordinates on the upper edge, 
width, height, and rotation angle of the bounding boxes, respectively. 
The rules for localizing the expected regions of safety vests are as 
follows: 

x1 = (xls + xrs)/2 (5)  

y1 = (yls + yrs)/2  

h1 =
[
(yls + yrs–ylh–yrh)

2/4 + (xls + xrs–xlh–xrh)
2/4

]1/2 

Fig. 5. Overview of the part attention localization module.  

Fig. 6. Illustration of the body knowledge-based rules for configuring head attention regions.  
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w1 = sa h1  

θ1 = tan− 1[(yls + yrs–ylh–yrh)/(xls + xrs–xlh–xrh) ]

where sa is the side length ratio of rotated boxes for Region Type II. 
Case 2-B -s houlders are visible while hips are invisible. The rules 

for cropping the expected regions of safety vests are as follows: 

x2 = (xls + xrs)/2 (6)  

y2 = (yls + yrs)/2.

w2 =
[
(yrs–yls)

2
+ (xrs–xls)

2 ]1/2  

h2 = sb w2  

θ2 = tan− 1[(yrs–yls)/(xrs–xls) ]

where x1, y1, w1, h1, θ1 denote the midpoint coordinates on the upper 
edge, width, height, and rotation angle of the bounding boxes, respec
tively. sb is the side length ratio of rotated boxes for Region Type II. 

Case 2-C – shoulders and one hip are visible. In this case, the rule 
for calculating the oriented box is the same as Case 2-B. 

Case 2-D – one shoulder is visible. The rules for determining upper- 
body attention regions are defined as follows: 

x4 = xls vls + xrs vrs (7)  

y4 = yls vls + yrs vrs  

h4 =
[
(yls vls + yrs vrs–ylh vlh–yrh vrh)

2
+ (xls vls + xrs vrs–xlh vlh–xrh vrh)

2 ]1/2  

w4 = sd h4  

θ4 = tan− 1[(yls vls + yrs vrs–ylh vlh–yrh vrh)/(xls vls + xrs vrs–xlh vlh–xrh vrh) ]

where x4, y4, w4, h4, θ4 indicate the corner coordinates on the upper 
edge, width, height, and rotation angle of the bounding boxes, respec
tively. sd is the side length ratio of rotated boxes for Region Type II. 

Case 2-E - shoulders are invisible. Severe occlusion occurs in upper 
body regions, so the authors define these cases as upper-body invisible. 

Fig. 8 shows several examples of localized head and upper body 
attention regions. By cropping these part attention regions, even if 
approximate, the proposed localization strategy could efficiently reduce 
the search spaces while distributing computational resources on small 
human-body areas that are candidates of PPE items. 

Fig. 7. Illustration of the body knowledge-based rules for configuring upper-body attention regions.  

Fig. 8. Part attention regions obtained for hardhat and vest recognition.  
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3.4. Binary classification for PPE and non-PPE use 

Workers wear the PPE items to protect a specific body area properly. 
The inherent relationships between the PPE instances and local body 
parts, e.g., (head, hardhat) and (upper-body, vest), can be used to aid in 
inferring the fact whether the worker is using the PPE without a detailed 
analysis of the spatial relations of the objects involved. Therefore, the 
classification of the cases into PPE use and non-PPE use classes relies on 
detecting PPE instances in the corresponding body part attention region. 
For example, if a hardhat appears in the head attention region, the 
worker is regarded as correctly complying with the compliance re
quirements of hardhats. In other cases, if the expected hardhat is missing 
from the head attention regions, the corresponding worker will be 
labeled as the NH. 

Each worker can produce two types of part attention regions: head 
attention regions and upper-body attention regions if their body parts 
are visible in the image. To recognize PPE instances within the part 
attention regions, the authors develop two classifiers: hardhat classifier 
f1(X1) and vest classifier f2(X2). Specifically, head attention regions 
comprise two classification results- hardhat use (WH) and non-hardhat 
use (NH), while the upper-body attention regions have two classes - 
vest use (WV) and non-vest use (NV). Based on the above analysis, the 
authors have implemented an inference engine to investigate the re
lationships between workers and PPE items and ultimately determine 
the categories of the focused regions as follows:  

Input: Ej,m is the m-th (m = 1, 2) part attention region of the j-th worker. 
Output: The PPE-use labels oj,k of the j-th worker. 
oj,k = Ø; 
for each head attention region Ej,1 of the j-th worker do: 

Apply the hardhat classifier f1(X1) to predict the hardhat label oj,1 (i.e., WH or 
NH); 

Add the label oi,1 to oj,k; 
end 
for each upper body attention region Ej,2 of the j-th worker do: 

Apply the vest classifier f2(X2) to predict the vest label oj,2 (i.e., WV or NV); 
Add the label oj,2 to oj,k; 

end 
Return oj,k  

For image classification, the prevalent deep CNN networks such as 
VGG [45], Inception [46], and ResNet [47] have attained impressive 
recognition results on the ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC) [48]. However, due to their network complexity 
with many parameters, very deep neural networks may have difficulty in 
optimizing the parameters and are prone to get overfitting during the 
training process. Given the relatively small size of cropped image 
patches (usually 32×32 or 64×64 in pixels) in this study, the authors 
adopted a shallow PPE/non-PPE classifier for hardhat and vest recog
nition based on the improved LeNet architecture [49]. 

Fig. 9 illustrates the architecture of the proposed classifier. This CNN 
classifier consists of six layers, including iterative convolutional and 
subsampling layers, along with fully connected layers. To illustrate, the 
authors denote convolutional layers (C layers), subsampling layers (S 
layers), and fully connected layers (F layers) as Cx, Sx, and Fx, respec
tively, where x refers to the layer index. 

The architecture takes the cropped image patches as input. The first 
convolutional layer C1 produces twenty feature maps from 5 × 5 filters. 
The feature maps in the C1 layer use different sets of weight parameters 
and biases, thus extracting multiple features from each location. The 
layer S2 with the filter size 2 × 2 and a stride of 2 can reduce the feature 
maps' height and width by half while the depth remains unchanged. 
Similar to C1, layer C3 is a convolutional layer with 5 × 5 kernels and 
fifty filters, resulting in fifty feature maps. The output of Layer C3 passes 
through the next subsampling Layer S4, which produces 16 feature 
maps. The fifth layer F5 is a fully connected layer containing 500 output 
units. Finally, the output layer F6 with Softmax activation assigns each 
input image into one of two classes (WH or NH; WV or NV). 

To determine the normalized size of input images, the authors 
analyze the scale distributions of part attention regions in the training 
subset, as shown in Fig. 10. For head attention regions, the image 
patches in the scale range of (14, 40) account for more than 50% of the 
samples. Therefore, the resized window size of head attention regions is 
32 × 32 pixels. Similarly, the cropped upper-body attention regions in 
the scale range of (29, 77) constitute more than half of the instances. The 
input resolution of the vest classifier is 64 × 64 pixels. 

4. Dataset and implementation details 

This section introduces the developed Construction Personal Pro
tective Equipment (CPPE) dataset and describes the implementation 
details and experimental settings of training and validation steps. 

4.1. Dataset statistics 

Publicly available image datasets on evaluating proper use of per
sonal protective equipment (PPE) involve Pictor-v3 dataset [3], GDUT- 
Hardhat Wearing Detection (GDUT-HWD) dataset [22], and Safety 
helmet wearing detect dataset (SHWD) [50]. These datasets have 
contributed to encouraging progress in ensuring site safety. However, 
GDUT-HWD and SHWD are established only for hardhat wearing 
detection. The public portion of the Pictor-v3 dataset contains few 
training samples that capture safety vest use scenarios. For this reason, 
this study introduces a new Construction Personal Protective Equipment 
(CPPE) dataset by collecting high-quality data from public datasets and 
web-mined images. The constructed CPPE dataset consists of 932 im
ages, including 2747 instances of hardhats, 1339 instances of safety 
vests, and 3428 workers, while covering various construction activities, 
illuminations, occlusions, and resolutions (see Fig. 11). 

The CPPE dataset contains 627 randomly selected training images 
and 305 testing images. Fig. 12 shows the number of hardhats, vests, 
hardhat use workers, non-hardhat use workers, vest use workers, and 
non-vest use workers in the training and testing subsets. The training 
subset consists of 2406 workers, 1890 instances of hardhats, 889 in
stances of vests, 1797 instances of hardhat use workers, 594 instances of 
non-hardhat use workers, 889 instances of vest use workers, and 1485 
instances of non-vest use workers. The number of hardhats is larger than 
the number of hardhat use workers because some workers are not 
properly wearing the hardhats (see Fig. 1a). The testing subset consists 
of 1022 workers, 857 instances of hardhats, 450 instances of vests, 804 

Fig. 9. The architecture of the PPE/non-PPE classifier network.  
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Fig. 10. Scale distributions of part attention regions.  

Fig. 11. Sample images from the CPPE dataset.  

Fig. 12. Data distributions of the CPPE dataset.  
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instances of hardhat use workers, 216 instances of non-hardhat use 
workers, 450 instances of vest use workers, and 562 instances of non- 
vest use workers. 

4.2. Implementation details 

The proposed method follows a three-step framework. First, a pose 
estimator extracted joint-level information for individual workers. Sec
ond, the authors used the spatial anchors of worker poses to localize 
body part attention regions that anticipate PPE items. Finally, two 
developed image classifiers can recognize PPE instances within the 
cropped part attention regions. 

4.2.1. Training of the lightweight OpenPose network 
To speed up the inference process, the authors used the MobileNet 

network [44] rather than the original VGG-19 [45] as the backbone. The 
lightweight OpenPose network [37] pre-trained on the MS COCO key
point train2017 split dataset [51] obtained the pose information of in
dividual workers. Similar to the original work of OpenPose, the authors 
applied random cropping, rotation (± 45

◦

), scaling (± 20%), and flip
ping (50%) for data augmentation. The input resolution is 368 × 368 
pixels with a batch size of 10 images. The network used Adam optimizer 
(initial learning rate of 1e-4 and epsilon of 1e-9) for 440,000 training 
iterations on a server with two NVIDIA GeForce GTX 1080Ti GPUs. 

4.2.2. Localization of the part attention regions 
The authors localized two types of part attention regions: head 

attention regions (Region Type I) and upper body attention regions 
(Region Type II) with joint-level information from the deriving poses of 
workers. Considering the workers' relative orientation, the authors 
defined body knowledge-based rules to localize corresponding part 
attention regions in different poses. To test optimal parameters r and s 
for regulating the proper size of part attention regions, the authors 
randomly selected about 20% images from the training subset for 
extensive trials. Table 2 lists the scaling parameters of part attention 
regions used in the experiment. 

4.2.3. Training of the PPE classifiers 
After cropping the body part (head and upper body) regions from the 

whole image, the authors manually annotate image patches with two- 
class labels (i.e., WH or NH for head attention regions, and WV or NV 
for upper-body attention regions). To fine-tuning network parameters of 
hardhat classifier f1(X1), 20% of WH and NH image patches cropped 
from the training subset of the CPPE dataset are randomly selected as the 
validation subset. The localized head attention regions are 32 × 32 
resized image patches. The batch size of all training models is 8, with the 
Adan optimizer and an initial learning rate of 1e-4 for 100 epochs. 
Similarly, the WV and NV image patches cropped from the training 
subset of the CPPE dataset are randomly split into 80% training samples 
and 20% validation samples for training the vest classifier f2(X2) with a 
batch size of 4. The cropped upper-body attention regions are infor
mative image patches with a window size of 64 × 64. All classifiers, i.e., 
hardhat classifier f1(X1) and vest classifier f2(X2), are trained with Adam 
optimizer with an initial learning rate of 1e-4 for 100 epochs. The au
thors also decrease the learning rate by half every ten epochs. The data 

augmentation involved horizontal flipping, scaling (± 20%), rotation (±
30

◦

), horizontal and vertical shifting (± 10%), and shearing (± 20%). 
The authors select the trained model with the highest accuracy in the 
validation subset for testing. In the experiment, the highest accuracy of 
hardhat classifier f1(X1) is at the 70th epoch, while the high accuracy of 
vest classifier f2(X2) is at the 46th epoch. 

5. Results and evaluations 

This section evaluates the performance of individual elements of the 
proposed method. These elements support worker detection, part 
attention localization, and PPE recognition as needed by the framework. 
The authors also compare the proposed method with state-of-the-art 
approaches. 

5.1. Performance evaluation of worker detection 

The authors use precision, recall, and F1-score as evaluation metrics 
to evaluate worker detection performance. The precision and recall are 
defined as follows: 

Precision = TP/(TP+FP) (8)  

Recall = TP/(TP+ FN) (9) 

where true positive (TP) is the number of correctly detected workers, 
false positive (FP) is the number of detected workers that are actually 
non-workers, and false negative (FN) is the number of missing workers. 

To measure the balanced performance of worker detection, the au
thors also use the F1 measure, which is the harmonic mean between 
precision and recall, as in Eq. (10): 

F1 = 2×Precision×Recall/(Precision+Recall) (10) 

Table 3 summarizes the precision and recall results for worker 
detection. The proposed method for worker detection achieved a 
99.61% precision and a 98.04% recall in worker detection, meaning that 
0.39% of the workers were incorrectly detected, and the algorithm 
missed 1.96% of the workers in the image. To evaluate the effect of scale 
variations of workers, the authors divide the CPPE dataset into three 
categories: small (0–96 pixels), medium (96–128 pixels), and larger 
(>128 pixels), based on worker heights (as given by the bounding box 
annotation). The test results (Table 3) show that the overall precision 
and recall of worker detection were above 95% for medium and large- 
scale cases. However, the proposed method showed a relatively low 
recall (71.97%) for worker detection under small-scale scenarios 
because extracting features from tiny persons is hard, and even human 
inspectors have difficulty in recognizing tiny instances from a long- 
range view. 

The authors have analyzed the typical examples of false worker de
tections in the CPPE dataset – these images cause false positive or false 
negative cases, as shown in Fig. 13. In these examples, ambiguous ob
jects at construction sites, such as humanoid shadows and equipment 
structures, may be incorrectly detected as human bodies in image 
frames. Introducing more negative instances helps the model discrimi
nate between workers and other site objects, thus reducing false-positive 
cases. Moreover, as indicated in Table 3, the small scale of workers that 
often occur in practical workplaces also frequently leads to false- 
negative errors. 

5.2. Performance evaluation of part attention localization 

To assess the performance of part attention localization, the authors 
used the intersection-over-union (IoU) between the cropped part 
attention regions and ground-truth bounding boxes as the evaluation 
metrics. The calculation of IoU between oriented bounding boxes is 
similar to that between horizontal bounding boxes. The only difference 
is that the IoU calculation for oriented bounding boxes is performed 

Table 2 
Scaling parameters of part attentions regions.  

Regions Head attention regions Upper-body attention regions 

Case 1-A 
ears 

1-B 
one ear 
and 
nose 

1-D 
one 
ear 

2-A 
shoulders 
and hips 

2-B 
shoulders 

2-D 
one 
shoulder 

Parameters ra rb rd sa sb = 1/sa sd = 1/sa 

Values 1.2 1.5 1.0 0.6 1.7 1.7  

R. Xiong and P. Tang                                                                                                                                                                                                                          



Automation in Construction 130 (2021) 103828

11

within polygons, as illustrated in Fig. 14. 
The computation of the IoU between two oriented bounding boxes is 

as follows: 

IoU =
area(B1 ∩ B2)

area(B1 ∪ B2)
(11)  

where B1 and B2 are two oriented bounding boxes. 
The authors used the open-source tool roLabelImg [52] to label the 

oriented ground-truth boxes of part attention regions. In general, the 
higher the IoU of part attention regions is, the higher the localization 
accuracy is. The IoU will check whether the IoU between these two 
bounding boxes is higher than a defined threshold. For the task of part 
attention localization, TP is the number of correct localizations with an 
IoU ≥ 0.5. FP is the number of improper localizations with an IoU < 0.5, 
while FN is the number of ground truth regions not detected. 

To further assess the impact of occlusion on part attention location, 
the authors classify the occlusion degree into different categories based 
on the number of visible anchoring keypoints in their corresponding part 

attention regions. Accordingly, the occlusion degree of head attention 
regions consists of five categories: “ears and nose,” “one ear and nose,” 
“ears,” “one ear,” and “head invisible.” The occlusion degree of upper- 
body attention regions contains four classes: “shoulders and hips”, 
“shoulders”, “one shoulder and one hip”, and “upper-body invisible”. In 
particular, the cases of “part invisible”, i.e., “head invisible” and “upper- 
body invisible”, will not generate any bounding boxes. TP is the number 
of correctly “part invisible” instances, FP is the number of “part invis
ible” instances that are actually “part visible”, and FN is the number of 
mis-detected “part invisible” instances. 

Table 3 
Summary of the results for worker detection.  

Task Category TP FN FP Precision Recall F1-score 

Worker detection Small (0–96 pixels) 113 44 7 94.17 71.97 81.59 
Medium (96–128 pixels) 129 6 1 99.23 95.56 97.36 
Large (>128 pixels) 3119 17 5 99.84 99.46 99.65 
Total 3361 67 13 99.61 98.04 98.82 

Note: precision, recall, and F1-score values are in percentage. 

Fig. 13. Examples of false worker detections.  

Fig. 14. Examples of IoU between oriented bounding boxes.  

Table 4 
Summary of the results for part attention localization.  

Regions Category Number of 
anchoring 
keypoints 

Precision Recall F1- 
score 

Head ears and nose 3 98.68 99.02 98.85 
one ear and 
nose 

2 99.26 98.38 98.82 

ears 2 96.34 95.18 95.76 
one ear 1 87.88 76.32 81.69 
head invisible* 0 76.92 66.67 71.43 
Total 98.55 98.02 98.28 

Upper 
body 

shoulders and 
hips 

4 99.68 98.81 99.24 

shoulders 2 91.89 94.01 92.94 
one shoulder 
and one hip 

2 84.21 74.41 79.01 

upper-body 
invisible* 

0 83.87 72.22 77.61 

Total 98.85 98.03 98.44 

Note: precision, recall, and F1-score values are in percentage. * indicates that the 
performance evaluation metrics of “head invisible” and “upper-body visible” 
differ from other cases. 
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The test results (see Table 4) show that the overall precision and 
recall of hardhat and upper-body region localization are above 98%. 
However, upper-body region localization performance is higher than the 
performance of head region localization because the head regions are 
typically much smaller than the upper-body regions. The anchoring 
keypoints within the head attention regions have denser distributions 
than the anchoring keypoints of upper-body attention regions, which 
makes it challenging for the pose estimator to infer their locations 
accurately. The results also reveal that body occlusions can affect the 
performance of part attention localization. For example, with fewer 
anchoring keypoints, the precision and recall of head part region 
localization provide 87.88% and 76.32% results, and precision and 
recall of upper-body part region localization yield 84.21% and 74.41% 
performance. 

The authors examined the typical cases where the proposed method 
fails in the CPPE dataset. Fig. 15 shows typical examples of false local
ization errors. Since the part attention regions are determined based on 
the detected worker poses, the localization errors and pose estimation 
failures are closely related. False part detection (Fig. 15a), which results 
from body occlusion, can lead to localization errors for head and upper 
body attention regions. High overlapping scenarios (Fig. 15b) can also 
lead to localization errors. In highly crowded scenes where workers are 
overlapping, the pose estimator may merge keypoints among different 
workers and partly miss detections. Fig. 15c shows false positives 
resulting from incorrect worker detections, while Fig. 15d refers to false- 
negative errors where the pose estimator fails to detect workers in the 
workplace. 

5.3. Performance evaluation of PPE recognition 

As for the PPE recognition, TP is the total number of the correctly 
classified cases where workers are using PPE, FP is the number of 
workers who are not using PPE properly is incorrectly identified as PPE 
use, FN is the number of workers who are wearing PPE is predicted as 
non-PPE use. In particular, the errors caused by incorrect part attention 
localization will not be calculated in the experiments since the objective 
of this section is to evaluate the PPE classifier's performance individu
ally. The authors also compared the developed classifier with the state- 
of-the-art CNN classifiers [44,45,47], including VGG-16, VGG-19, 
MobileNet, ResNet-18, ResNet-34, ResNet-101, and ResNet-152. The 
runtime speed for each CNN classifier uses Frames Per Second (FPS) as 
the evaluation metrics by averaging the inference time on the testing 
subset. 

The test results (see Table 5 and Table 6) show that VGG-19 and 
VGG-16 achieve the highest F1-score (0.98 and 0.97) on hardhat and 
vest recognition, respectively. The proposed method achieves a 97.13% 
precision, a 97.74% recall for hardhat recognition, and a 96.12% pre
cision, a 94.61% recall for vest recognition. However, the shallow CNN 
classifier with far fewer parameters used by this study provides 179.3 
FPS on the hardhat testing subset and 156.6 FPS on the vest testing 
subset, which is much faster than other methods. Furthermore, the CNN 
classifiers with different depths have shown similar classification per
formances. Two main reasons are: (1) the model inputs are typically 
low-resolution patches (usually 32×32 or 64×64 in pixels); and (2) the 
part attention regions retain the informative regions while eliminating 
distracting backgrounds. Consequently, the shallow CNN classifiers 
trained from scratch can also achieve high performance for recognizing 
PPE items. 

Additionally, the CNN classifiers with different depths have shown 
similar testing performances due to the relatively low resolution of 
cropped image patches (usually 32 × 32 or 64 × 64 in pixels) in this 
study. Meanwhile, the part attention regions retain the informative re
gions while eliminating distracting backgrounds, which also makes it 
easier for classifiers to extract critical features of PPE instances. 

Fig. 16 shows typical mislabeled examples in the testing subset. In 
general, two reasons can explain these errors: (1) the low resolution of 
the input image patches and (2) visual confusion caused by similar ob
jects. The CNN classifiers have difficulty in extracting sufficient features 
from low-resolution inputs. The alternative is to enhance image reso
lution with super-resolution (SR) techniques [53] before feeding them 
into the image classifiers. Similar objects can also lead to false-positive 
errors. For example, ordinary hats can be misleading objects for hard
hats for their similarity in shapes. Introducing more negative examples 
during the training process could mitigate these false-positive errors. 

5.4. Overall performance evaluation and comparative studies 

In previous sections, the authors reported the performance of the 
three components that support the framework individually. This section 
provides the overall performance of the proposed method. An efficient 
PPE detection algorithm provides accurate classification results and 
localizes their classes with high IoU. TP is the number of correct PPE use 
detections with an IoU ≥ 0.5. FP is the number of PPE use detections 
with an IoU < 0.5, while FN is the number of the PPE use instances that 
are not detected. 

The test results in Table 7 show that the proposed framework yields a 

Fig. 15. Examples of localization errors for part attention regions.  
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97.01% precision and a 96.89% recall for hardhat detection, and a 
95.68% precision and 93.56% recall for vest detection. The performance 
of vest detection is slightly lower than hardhat recognition. Several 
factors may contribute to this issue. First, the upper body regions are 
more likely to be occluded by other workers, materials, or equipment in 
the workplace. Body occlusions can lead to additional distracting in
formation (e.g., the partial bodies of other workers or site objects), even 

when the corresponding part attention regions are correctly localized 
and cropped. Second, particular orientations of workers (e.g., side-view) 
with fewer visual features of upper-body regions increase the task dif
ficulty of vest recognition. Finally, distinguishing vests from ordinary 
clothing is challenging due to their visual similarity in textures, colors, 
and shapes. Fig. 17 shows the qualitative results of the proposed 
method. Different PPE classes are labeled in different colors to achieve 

Table 5 
Summary of the hardhat recognition results with different classifiers.  

Task Input size Algorithms Precision Recall F1-score Speed (fps) 

Hardhat recognition 32×32 VGG-16 97.52 98.62 98.07 104.9 
VGG-19 97.76 98.49 98.12 96.2 
MobileNet 94.92 96.11 95.51 49.3 
ResNet-18 97.35 96.61 96.98 59.3 
ResNet-34 97.59 96.49 97.04 37.3 
ResNet-101 97.98 97.62 97.80 15.8 
ResNet-152 97.82 95.86 96.83 10.5 
Proposed method 97.13 97.74 97.43 179.3 

Note: precision, recall, and F1-score values are in percentage. The bold value indicates the highest performance. 

Table 6 
Summary of the vest recognition results with different CNN classifiers.  

Task Input size Algorithm Precision Recall F1-score Speed (fps) 

Vest recognition 64×64 VGG-16 96.23 97.53 96.88 99.9 
VGG-19 93.38 98.20 95.73 92.8 
MobileNet 94.35 86.29 90.14 48.3 
ResNet-18 94.95 93.03 93.98 55.8 
ResNet-34 89.44 89.44 89.44 37.5 
ResNet-101 92.34 89.44 90.87 15.5 
ResNet-152 93.94 90.56 92.21 10.4 
Proposed method 96.12 94.61 95.36 156.6 

Note: precision, recall, and F1-score values are in percentage. The bold value indicates the highest performance. 

Fig. 16. Examples of mislabeled image patches.  

Table 7 
Detection results on the CPPE dataset.  

Algorithm Input size Backbone Hardhat detection Vest detection 

Precision Recall F1-score Precision Recall F1-score 

YOLO-v3 [54] 416×416 Darknet-53 94.70 90.58 92.59 92.10 67.63 77.99 
SSD300 [19] 300×300 VGG-16 95.68 52.18 67.53 92.01 84.82 88.27 
Faster R-CNN [20] 300×500 ResNet-50 79.01 89.99 84.14 90.76 92.97 91.85 
Proposed method 32×32 / 64×64 – 97.01 96.89 96.95 95.68 93.56 94.61 

Note: precision, recall, and F1-score values are in percentage. The bold value indicates the highest performance. 
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better visualization. 
The authors also compared the proposed method with current state- 

of-the-art methods [17,19,54] on the developed CPPE dataset. This 
study annotated all workers and PPE instances (e.g., hardhats and vests) 
in the CPPE dataset using LabelImg [55] as the Pascal VOC format. Ten 
percent of the images randomly selected from the training subset serve 
as validation subsets. To achieve better model performance, the authors 
first pre-trained all three models on the MS COCO dataset [51] and then 
fine-tuned the models on the CPPE dataset with a batch size of 8 using 
the Adam optimizer and an initial learning rate of 1e-4 for 100 epochs. 
The learning rate dropped by half every ten epochs. Table 7 reports the 
detection results of different methods on the CPPE testing subset. 

As listed in Table 7, the proposed method provides higher precision 

and recall performance than existing methods. Specifically, the adopted 
detecting strategy surpasses the state-of-the-art methods by 1.33% 
precision (SSSD300) and 6.31% recall (YOLO-v3) in hardhat detection, 
as well as 3.58% precision (YOLO-v3) and 0.59% recall (Faster R-CNN) 
in vest detection. The Faster R-CNN model offers a relatively balanced 
performance for hardhat detection and vest detection. The SSD model 
commonly fails to detect hardhats, while the YOLO-v3 model yields 
relatively low recall performance on vest detection. 

Fig. 18 shows a qualitative comparison of these approaches. The 
proposed method brings detection improvements by only focusing on 
local areas expecting PPE instances. Meanwhile, the developed strategy 
can directly determine non-PPE-use cases without any computational 
process of relationship verification of the cases involved. The skeleton- 

Fig. 17. Qualitative results of the proposed method. Different object categories are labeled in different colors. Red color – non-hardhat use; Green color – hardhat 
use; Yellow color – non-vest use; Blue color – vest use. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 18. Qualitative comparisons with state-of-the-art methods. Examples annotated with white ovals correspond to false detections.  
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based representations of workers also help isolate each worker from a 
crowded workspace where severe occlusions exist between workers, 
compared to the worker detection in the form of bounding boxes. 
Finally, the pose-guided framework of this study supports the advanta
geous extensibility of detecting multi-class PPE items. The available 
keypoints can provide spatial anchors for localizing anticipated body 
part regions depending on PPE classes. When introducing a new PPE 
class, the classifiers trained to verify existing PPE types do not require 
any further re-training of the entire model. 

5.5. Performance evaluation under challenging site scenarios 

In this section, the authors qualitatively evaluated the performance 
of the proposed method under challenging site conditions, including tiny 
targets, extreme occlusions, non-regular illumination, low light, and 
blur, with the model parameters trained on the developed CPPE dataset. 
This study integrated the Pictor-v3 dataset [3] captured from con
struction sites as the additional testing dataset for these challenging 
scenarios. Since the Pictor-v3 dataset contains few safety vest-use ex
amples, this study evaluated the model performance on worker and 
hardhat detection. 

Table 8 shows the detection results of the YOLO-v3 model and the 
proposed method on the Pictor-v3 dataset. The results showed that the 
proposed method provides higher detection performance of workers and 
hardhats than the YOLO-v3 model. The challenging conditions mainly 
result in missing detections rather than false alarms. One of the most 
significant factors that could explain recall performance drop is that the 
Pictor-v3 dataset contained many tiny workers. As the tiny objects 
contain only a few pixels, the computer vision algorithms struggle to 
identify small-scale objects from long-range views [56]. Future research 
will examine optimal placements of cameras at construction sites to fully 
cover workplaces and improve image resolutions. In terms of enhancing 
algorithms for small object detection, recent model architectures such as 
Feature Pyramid Network (FPN) [57] that utilize multiscale features 
have shown promising performance for small object detection. The au
thors will explore the effectiveness of these two strategies for improving 
the performance of the developed approach in small object detection in 
future research. 

Fig. 19 shows a qualitative comparison of these approaches. Since 
the object-centric models verify non-hardhat-use workers by checking 
whether a hardhat is present in or around a worker's detection region, 
the YOLO-v3 based detection scheme could generate false alarms while 
processing images having severe occlusions for human heads. However, 
the proposed method can significantly reduce the number of false alarms 
when body parts are invisible in the images. The qualitative results also 
demonstrated that other challenging conditions, such as low light, 
irregular illumination, or blur, did not significantly affect the perfor
mance of the proposed method in detecting workers and hardhats. 

6. Limitations and discussions 

The proposed method has shown several limitations in testing results 

for future improvements. First, the authors trained the pose estimation 
model on the publicly available MS COCO keypoint dataset [51]. The MS 
COCO keypoint dataset mainly collects images from daily life scenarios 
while containing few image samples from construction sites. Although 
the pre-trained model on the MS COCO dataset has achieved high 
worker detection performance in most cases, further efforts to establish 
a domain-specific dataset will enhance the model adaptation to pose 
estimation for construction workers. Second, the cropped body part 
attention regions are typically in low resolution (usually 32 × 32 or 64 ×
64 in pixels). Such low-resolution examples are challenging for the 
classifiers to extract explicit features. The authors will integrate super- 
resolution (SR) techniques to improve the resolution of image patches 
before feeding them into the CNN classifiers. Third, to speed up the 
inference process, the authors used a lightweight MobileNet [44] with 
fewer parameters as the backbone of the pose estimation model and 
adopted a shallow CNN classifier rather than deep networks for PPE 
recognition. Simplifying the pose estimation model based on PPE types 
could further reduce computational resource requirements. For 
example, if the task were to identify the non-hardhat use workers, only 
the body joints in the head attention regions would need to be detected 
in images. Likewise, if the goal were to localize both non-hardhat use 
and non-vest use workers, lower body joints like ankles and knees are 
not necessarily required for this detection purpose. Furthermore, 
although the proposed method is extensible for verifying multi-class PPE 
compliance, the authors only focus on demonstrating the effectiveness of 
the proposed framework by simultaneously testing for safety violations 
of two types of PPE – hardhat and vest. The authors plan to extend the 
CPPE dataset to detect more types of PPE components, such as safety-toe 
footwear, gloves, or goggles. 

7. Conclusions 

Automatic monitoring for PPE use is crucial for ensuring safety 
controls and preventive measures at construction sites. This paper pro
poses a pose-guided anchoring framework to address the challenges of 
multi-class PPE detection in workspaces. The pose estimator first detects 
and represents individual workers in the form of full-body skeletons in 
crowded workplaces. The spatial anchors of worker poses can guide the 
algorithm's attention to specific body part attention regions that are 
anticipating PPE instances. The part attention localization module then 
integrated body knowledge-based rules to localize local image patches 
considering workers' orientations and object scales. This new strategy 
demonstrates its effectiveness in reducing search spaces while 
improving object recognition performance for handling multi-type PPE. 
Finally, this research trained two CNN-based classifiers to determine 
whether the identified part attention regions have hardhats or vests. 
Instead of verifying non-PPE use cases by checking spatial relationships 
of the involved workers and PPE instances, the new method directly 
inferred non-PPE cases from those regions where the expected PPE is 
missing. 

To assess the performance of the proposed method, the authors 
established a new CPPE dataset of 932 images amounting to 2747 in
stances of hardhats, 1339 instances of safety vests, and 3428 workers. 
The experimental results on the developed CPPE dataset show that this 
new approach has achieved high precision and recall in individual tasks, 
i.e., worker detection, hardhat detection, and vest detection. Compared 
with the existing methods, the proposed method shows higher precision 
and recall performance in worker detection and PPE recognition. The 
pose-guided strategy also supports the advantageous extensibility of 
detecting multi-class PPE items. To encourage future research in the 
area, the authors have publicly released all trained models and the CPPE 
dataset in this paper on the GitHub page https://github.com/ruoxinx 
/PPE-Detection-Pose. 

Nevertheless, the proposed framework has shown several limita
tions, and the authors also suggest possible directions for further im
provements. First, establishing a construction domain-specific dataset 

Table 8 
Detection results on the Pictor-v3 dataset.  

Method Worker detection Hardhat detection 

Precision 
(%) 

Recall 
(%) 

F1- 
score 

Precision 
(%) 

Recall 
(%) 

F1- 
score 

YOLO-v3 
[54] 

97.61 77.94 86.76 93.48 66.85 77.95 

Proposed 
method 

98.16 78.80 87.42 96.43 67.21 79.21 

Note: precision, recall, and F1-score values are in percentage. The authors report 
the detection results by eliminating over-similar samples from the dataset to 
avoid evaluation bias. 
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for worker pose estimation could enhance the model adaptation and 
reduce incorrect and missing detections. Second, the authors plan to 
simplify the pose prediction network based on the nature of the specific 
PPE detection task, which should further reduce the computation 
resource needs of the algorithm. Finally, the authors plan to extend the 
CPPE dataset to include more diverse PPE components. 
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