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A B S T R A C T

Heating, Ventilation, and Air Conditioning (HVAC) systems in large-scale buildings often struggle to ensure
satisfactory thermal comfort for diverse occupants while minimizing energy waste. Achieving this goal requires
developing reliable prediction models that capture the changing and varied occupant thermal perceptions in
different spaces. Despite their widespread use, many machine learning (ML) based prediction models suffer
from subjective data biases and model predictive uncertainties, causing inaccurate estimation for occupant
needs and leading to suboptimal building controls. The authors propose a data-model integration method that
identifies and calibrates the inherent uncertainties of existing ML models in both data and model dimensions,
ensuring reliable thermal perception predictions. This method introduces the Multidimensional Association
Rule Mining (M-ARM) algorithm to identify biased human responses by exploring interrelationships among four
perception metrics: thermal sensation, comfort, acceptability, and preference. Our method reveals significant
performance enhancements in seven ML models, enhancing the F1-score by up to 5.53%. By leveraging
reliability diagrams and Expected Calibration Error (ECE) scores, we also expose the models’ vulnerability
to miscalibration and the need for calibrated predictions. We further evaluate six calibration techniques (e.g.,
Platt Scaling and Isotonic Calibration) on these models and uncover their potential to enhance prediction
reliability performance, highlighting a reduction of up to 80.66% in ECE scores. The authors also investigated
the impacts of dataset sizes, classifiers, and calibration methods on the proposed method. Our research offers
insight into creating robust data-driven strategies for thermal perception predictions, ultimately contributing
to optimized occupant comfort and energy efficiency in buildings.
1. Introduction

Maintaining thermal comfort is essential for the well-being and
productivity of individuals in shared workplaces. Despite the prevalent
ASHRAE standard that requires delivering satisfactory thermal condi-
tions for a minimum of 80% of occupants [1], heating, ventilation,
and air conditioning (HVAC) systems, especially in large-scale com-
mercial facilities often fall short of achieving these thermal comfort
targets. For instance, a ten-year survey involving 52,980 occupants
across 351 commercial buildings discovered that 43% of respondents
expressed dissatisfaction with the temperature in their workspace [2].
This inadequacy can be attributed to the reliance on fixed temperature
setpoints by HVAC systems, which often results in over-conditioning
or under-conditioning of specific zones, ultimately leading to occupant
discomfort [3]. Moreover, the discrepancy between fixed setpoints and
occupants’ thermal preferences contributes to energy waste [4]. Recent
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studies have shown that incorporating suitable comfort models for
HVAC control can yield energy savings of more than 10% [5,6]. These
findings emphasize the importance of developing comfort-driven HVAC
systems that improve occupant thermal comfort while reducing energy
consumption [7,8].

Reliable predictions of occupant thermal perceptions are crucial
for implementing such comfort-driven HVAC controls. These predic-
tion models should reveal the relationship between the ambient ther-
mal environment (e.g., temperature and humidity), individual factors
(e.g., clothing level and metabolic rate), and occupants’ thermal percep-
tions. Two well-established models often used in building environment
assessment standards are the Predicted Mean Vote-Percentage of Dissat-
isfied (PMV-PPD) model and the Adaptive Comfort model [1]. Despite
their prevalence, these models have inherent drawbacks, most notably
the absence of self-learning or self-correction abilities, which curtails
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their accuracy across diverse scenarios [9]. For example, the PMV-
PDD model achieves an approximate accuracy of 34% when tested on
the ASHRAE Global Thermal Comfort Database II, currently the most
comprehensive database for thermal comfort [10]. To address these
limitations, recent studies have explored various machine learning
(ML) models, such as the Support Vector Machine (SVM) and Decision
Tree (DT), to capture the complex relationships between the physical
environment and occupants’ subjective thermal perceptions [9,11]. ML
models’ ability to recognize non-linear interactions between variables
from extensive data sets can significantly enhance the accuracy of
thermal comfort predictions. Furthermore, their inherent capacity to
adapt to changing conditions and self-correct over time makes them
more suitable for practical applications [12,13].

Despite a growing interest in ML-based thermal comfort predictions,
several significant research gaps remain. One gap lies in identifying
the subjective bias on thermal comfort perceptions and understanding
their impacts on prediction accuracy [14,15]. Distinct from objective
measurements of the physical environment, thermal comfort labels are
largely subjective. Consequently, these labels are susceptible to varying
interpretations of ‘‘comfortable’’ thermal conditions among individ-
uals or distinct groups [16,17]. On the other hand, subjective bias
may arise from imprecise evaluations or flawed data documentation
practices [12]. Typically, thermal perception labels are obtained from
occupants through thermal environment surveys, which frequently pose
questions such as, ‘‘What is your general thermal sensation?’’ Yet, the
simplicity of a single-question scale often fails to ensure the accurate
measurement of subjective perceptions [16]. Such subjective biases
can introduce noise and uncertainty into ML models that depend on
subjective labels for model training and validation, potentially resulting
in suboptimal control strategies for building energy management sys-
tems [18,19]. Therefore, developing an approach to identify subjective
data biases on thermal comfort perceptions is essential to successfully
apply ML-based thermal comfort models in designing occupant-centric
building HVAC controls.

Another significant gap is the insufficient evaluation and calibration
of predictive uncertainties in existing thermal perception prediction
models. Inherent uncertainties, such as model parameters, structure,
and data quality, may result in these models producing uncertain
predictions [20,21]. These uncertain predictions could, in turn, guide
inappropriate HVAC control actions, causing both occupant discomfort
and energy waste. In the context of practical applications for building
HVAC systems, it becomes imperative to establish a well-calibrated
prediction model, which can provide an indication of the likelihood
of its predictions being either accurate or fallible [22]. The calibration
of predictive uncertainties serves two fundamental purposes: (1) it
improves the transparency of the decision-making process and fosters
trust in ML models [23], and (2) it promotes informed HVAC control
decisions by exploiting the model’s predictive uncertainties and mis-
prediction costs, thus managing desired control performance associated
with varying conditions [24–26]. Despite these considerations, most
existing studies still rely on the models’ error rate (or accuracy) as the
primary metric for their selection and deployment in real-world scenar-
ios [12]. Unfortunately, high prediction accuracy does not necessarily
assure commendable reliability performance [27]. Hence, there exists
a need for a comprehensive evaluation of the reliability performance
of existing ML-based prediction models for thermal perceptions.

This study addresses the above-mentioned limitations by devel-
oping a data-model integration method that improves the reliability
of ML-based approaches for optimizing building occupant comfort.
Considering the potential interrelationships among subjective percep-
tion metrics (such as thermal sensation, thermal comfort, thermal
acceptability, and thermal preference), this study proposes a multidi-
mensional association rule mining (M-ARM) method to capture biased
human responses to thermal environments with quantitative perfor-
mance. Based on calibrated subjective biases in thermal perceptions,
2

the authors examine the impacts of these biases on the prediction
accuracy of existing ML-based methods. The study also evaluates the re-
liability performance of these models using the reliability diagrams and
Expected Calibration Error (ECE) [28]. Our analysis results underscore
the miscalibration issues prevalent within current thermal perception
models. To bolster the reliability of these models, this study examines
the calibration performance of six prevalent model calibration methods
in terms of ML methods and dataset sizes. The outcomes of this study
provide insights into the advancement of ML-based strategies, with
the aim of achieving reliable thermal perception predictions. These
predictions can aid in reducing energy consumption and enhancing
occupant well-being within buildings.

The organization of this paper is as follows. Section 2 reviews
relevant research studies on uncertainties in ML-based thermal per-
ception predictions. Section 3 introduces the proposed data-model
integration framework designed to calibrate subjective data biases and
model predictive uncertainties. Subsequently, Section 4 introduces the
implementation details and evaluation metrics in this study. Section 5
evaluates the proposed framework using extensive experiments, an-
alyzes the effect of the dataset size, and examines the impacts of
subjective bias on the model reliability. Section 6 discusses the study’s
limitations and suggests potential directions for future research. Finally,
Section 7 provides a summary of the research findings.

2. Literature review

This section reviews the related literature, focusing on three pri-
mary aspects: (1) uncertainty sources in ML-based thermal perception
predictions, (2) subjective data biases in occupant thermal perceptions,
and (3) prediction uncertainties of ML models in thermal perception
predictions.

2.1. Uncertainty sources in ML-based thermal perception predictions

Thermal perceptions represent the personal state of satisfaction with
the thermal environment and are assessed by subjective evaluation [1].
Maintaining a suitable level of thermal comfort for building occupants
is a principal objective for HVAC design engineers. Achieving this goal
requires the development of reliable thermal comfort models that can
predict diverse occupant needs across different spaces.

Thermal perception prediction is typically formulated as a clas-
sification or regression task. The PMV-PPD model, for instance, is
widely recognized and implemented across several standards, such as
ANSI/ASHRAE Standard 55 [1], serving as an industry benchmark
to determine acceptable thermal conditions in indoor environments.
However, these methods may not effectively capture individual ther-
mal comfort variances, which could result in inaccurate assessments
of personalized thermal requirements and lead to suboptimal energy
management within buildings. Recent studies have employed various
ML algorithms [9,12], such as Logistic Regression (LR), DT, SVM, K-
Nearest Neighbors (KNN), Naïve Bayes (NB), Multi-layer Perceptron
(MLP), and Ensemble learning algorithms, including Gradient Boosting
Machine (GBM), Adaptive Boosting (AdaBoost), and Random Forest
(RF), for predicting thermal perceptions. However, the application of
ML methods introduces prediction uncertainties pertaining to their
outputs, which need to be addressed as the decision-making of these
systems could potentially impact human well-being and building en-
ergy. To facilitate informed decision-making in uncertain scenarios and
potential safety implications, these models should provide a guaranteed
functionality and estimate the probability of their predictions falling
outside the desired range.

Fig. 1 presents the uncertainty sources involved in characterizing
the dynamics of the Human–Building–Environment (HBE) systems,
which encompasses data biases and model uncertainties. In real-world
scenarios, ML methods require extensive data for modeling the re-

lationship between physical characteristics (e.g., air temperature and
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Fig. 1. Uncertainty sources for characterizing the Human–Building–Environment (HBE) system dynamics.
umidity), personal factors (e.g., metabolic rate and clothing insula-
ion), and their associated thermal perceptions [9,12,29]. However,
ll collected data types, encompassing sensor-based and human inputs,
ave inherent accuracy limitations and could be subject to numerous
ata quality and measurement reliability issues, including experiment
rrors, experimental selection bias, and reporting bias [16,30]. Selec-
ion bias can manifest during the delineation of the study population.
nce this population is identified, selection bias may arise if the recruit-
ent and enrollment criteria inherently vary between distinct study

roups. Experimental errors typically relate to procedural mishaps,
uch as variations in ambient conditions or experimental sequences,
bserved during experimental trials. Reporting bias becomes evident
ost-experiment when participants offer inconsistent feedback or when
esearchers omit to present precise results. Consequently, the inherent
ncertainty in an ML model’s predictions is closely tied to the quality
f its input data [31].

Prediction uncertainty of ML-based thermal perception models pri-
arily arises from two main sources: aleatoric and epistemic uncer-

ainties [32,33]. Aleatoric (data) uncertainty pertains to the inherent
oise found in observations, while epistemic uncertainty is attributed
o insufficient knowledge needed to accurately define model param-
ters. Aleatoric uncertainty, inherent to data variability, necessitates
ethodological refinements such as enhanced data quality and strategic

eature optimization [34]. Conversely, epistemic (model) uncertainty,
ndicative of model-specific insufficiencies, demands advanced model-
ng architectures, rigorous model calibration, increased dataset size,
nd the assimilation of domain-specific insights [20]. These strate-
ies fortify model robustness and elevate predictive performance in
nalytical frameworks.

Unfortunately, most existing studies focus on evaluating the model’s
iscriminative ability (i.e., the capacity to generate accurate predic-
ions) [12]. Metrics typically employed for this purpose include accu-
acy, precision, recall, mean squared error (MSE), and mean absolute
rror (MAE). Limited studies have thoroughly examined the reliability
erformance of these ML-based thermal perception prediction models.
odel reliability refers to the correlation between a model’s predicted

robability (ranging from 0% to 100%) and the observed probability,
ssessed using metrics such as calibration diagrams and ECE [28]. The
igh prediction accuracy does not guarantee high model reliability per-
ormance [35]. Some ML models may display poor calibration, distort-
ng predicted probabilities and leading to incorrect control actions [36],
ltimately causing occupant discomfort and energy inefficiency.

.2. Subjective data biases in thermal perceptions

Unlike objective measurements of the physical environment, self-
eported thermal perceptions are largely subjective, making the asso-
iated biases harder to detect and analyze [19,37]. These subjective
hermal perceptions of varying conditions, serving as labels, are crucial
3

or training and evaluation purposes in ML-based methods. Typically,
a diverse group of participants is recruited to report their percep-
tions and satisfaction levels regarding their thermal environment. The
most commonly employed thermal perception metrics include thermal
sensation (7-point scale), thermal preference (3-point scale), thermal
acceptability (2-point scale), and thermal comfort (6-point scale). Ta-
ble 1 provides an overview of these four thermal comfort responses,
which are frequently combined to explore different aspects of occupant
perceptions.

Subjective evaluations of indoor environments are inherently af-
fected by inter- and intra-individual differences, such as biological,
psychological, and background factors [14,38]. A notable study by
Schweiker et al. [17] examined subjective thermal assessments across
26 countries, finding that contextual differences, such as climate and
language, influenced thermal comfort perceptions. This work brought
into question the reliability of these scales as predictive measures
of occupant comfort. Furthermore, subjective data biases could re-
sult from imprecise evaluations, non-representative population sam-
pling, or inaccurate data documentation [12,16], which may, in turn,
lead to inaccurate predictions of thermal perceptions among building
occupants.

Detecting subjective bias poses a considerable challenge, given that
subjective comfort votes do not offer ground truth information. Several
studies have explored distance-based and stochastic-based techniques
to identify and mitigate subjective bias in thermal perceptions [19].
For example, Zhang et al. [39] applied three stochastic approaches,
including the 3-Sigma, Boxplot, and Hampel rules, to filter anomalous
data. Although these techniques have demonstrated a certain degree
of efficacy, they often do not sufficiently accommodate intricate and
subjective aspects of thermal perceptions. These methods assume that
similar conditions prompt similar thermal responses and identify out-
liers predicated on input features, simplifying the inherent variability
and complexity associated with subjective perceptions. Furthermore,
existing methods do not sufficiently account for the intertwined nature
of various thermal perception metrics, instead considering each met-
ric independently. These approaches fail to capture the multifaceted,
interconnected nature of thermal comfort perception, thus limiting
their ability to fully understand and predict this multidimensional
phenomenon. To address these limitations, this study examines the
association patterns within subjective perceptions while intentionally
avoiding modeling relationships between input features and labels.
By incorporating potential interrelationships among subjective per-
ceptions, this study aims to provide an in-depth understanding of
subjective thermal evaluations and robust detection mechanisms for
potential response biases.

2.3. Uncertainty quantification and calibration for ML-based thermal per-
ception prediction models

Recent research has utilized a range of ML algorithms for predicting
thermal perceptions, including LR, DT, SVM, KNN, NB, and MLP, as

well as ensemble techniques like AdaBoost and RF [9,12]. Uncertainty
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Table 1
Summary of subjective thermal perception metrics in thermal comfort surveys.

Thermal metrics Subjective rating scale

Thermal sensation hot (+3), warm (+2), slightly warm (+1), neutral (0), slightly
cool (−1), cool (−2), cold (−3)

Thermal preference cooler, no change, warmer
Thermal acceptability unacceptable (0), acceptable (1)
Thermal comfort very uncomfortable (1), uncomfortable (2), slightly

uncomfortable (3), slightly comfortable (4), comfortable (5),
very comfortable (6)
quantification (UQ) refers to estimating the uncertainty level in those
models’ predictions. This can include both data and model uncertainty,
with the latter arising from the model’s lack of knowledge. Prevalent
UQ techniques for ML models include [36]:

• Ensemble methods: These techniques harness the diversity within
the ensemble to gauge uncertainty by employing multiple learn-
ers. An exemplar is the RF classifier, where uncertainty is inferred
from the distribution of tree votes.

• Bayesian approaches: These methodologies combine prior be-
liefs regarding model parameters with the likelihood function
derived from observed data, providing a posterior distribution
that reflects model uncertainty.

• Probabilistic models: These inherently yield probabilistic results.
For instance, LR employs the sigmoid function to estimate the
probability of a sample belonging to a particular class. MLP
structures generate probabilities based on activation functions
like sigmoid (binary tasks) or softmax (multiclass tasks) in their
output layer.

In real-world HVAC control systems, calibrated model uncertainties
re crucial in enhancing model interpretability and fostering trust
mong users, given that humans are inherently intuitive towards prob-
bilities [23]. In applications, ML methods are expected to be ca-
able of indicating the level of confidence in their predictions for
ncertainty-informed building thermal regulation [22]. This means
hat the probability associated with the predicted perceptions should
irectly correlate with the likelihood of their correctness. Further,
he integration of predictive uncertainties can assist in optimizing
he control actions of HVAC systems by quantifying uncertainties and
efraining from decision-making in the face of significant uncertain-
ies [24,25]. By understanding and addressing predictive uncertainties,
VAC systems can make more informed decisions for thermal controls
nd ultimately improve thermal comfort for occupants while reducing
nergy consumption. For example, Chao et al. [24] introduced a hybrid
ontrol strategy that determined the HVAC reference temperature point
y fusing the setpoint determined by the model and the setpoint
ecommended by the experts based on the prediction confidence level.
his strategy showed more efficiency than the conventional controllers

n terms of both comfort level and energy-saving. Maasoumy et al. [25]
haracterized the impact of model uncertainty on model-based con-
rollers and developed a methodology for selecting a controller type
i.e., Robust Model Predictive Control (RMPC), Model Predictive Con-
rollers (MPC), and Rule Based Control (RBC)) as a function of building
odel uncertainty.

Unfortunately, algorithmic predictions may not always produce
alid probability estimates aligned with the underlying true probabil-
ties, limiting their utility as reliable uncertainty quantifiers [36,40].
uch discrepancies often arise from model miscalibration [40]. Given
he prevalent application of ML-based models in thermal perception
redictions, this study examines model reliability in quantifying pre-
iction uncertainties and seeks to recalibrate uncertainties in instances
f model prediction deficiencies.

Calibration involves techniques applied after the primary model
raining (post-hoc) to assess and improve how well a model’s predicted
robabilities align with the true event probabilities and to make cor-
ections for miscalibrated models. These methods adjust the model’s
4

predictions, thereby enhancing calibration accuracy. Previous studies
have developed several calibration techniques for binary classifiers,
including Platt scaling [41], isotonic calibration [35], and beta cal-
ibration [42]. Extensions of the above approaches include Bayesian
Binning into Quantiles (BBQ) [43], which performs Bayesian averaging
of multiple calibration maps obtained with equal-frequency binning.
For multiclass calibration, the problem has been approached by frag-
menting it into one-vs-all binary calibration tasks [35], one for each
class. Recently, native multiclass calibration methods were also in-
troduced, including temperature scaling [28], which can be seen as
a multiclass extension of the Platt scaling. In light of the growing
utilization of ML models for thermal perception prediction, the authors
will evaluate the efficacy of state-of-the-art calibration methods for
these ML-based models. By incorporating these calibration techniques,
our goal is to increase the reliability performance of model predictions
and ultimately provide trustworthy thermal perception predictions for
practical applications.

3. Methodology

This section introduces the proposed framework that calibrates
subjective data biases and model predictive uncertainties, as illustrated
in Fig. 2. Unlike the existing ML workflows for thermal perception
predictions (marked by the dashed arrow in Fig. 2), the authors present
a data-model integration method (highlighted by the solid arrow in
Fig. 2) that aims to identify and calibrate the inherent uncertainties
of ML models across data and model dimensions. Specifically, the
developed M-ARM algorithm aims to identify and understand biased
human responses by exploring anomalous association patterns among
inter-related subjective perception metrics: thermal sensation, thermal
comfort, thermal acceptability, and thermal preference. Using the re-
liability diagrams and ECE score, this study assesses the reliability
performance of existing ML-based thermal perception prediction mod-
els. Furthermore, the authors incorporate state-of-the-art calibration
methods to reduce prediction uncertainties. Our overarching objective
is to provide more reliable thermal perception predictions, which can
effectively guide HVAC control practices.

3.1. Data collection and preprocessing

The ASHRAE Global Thermal Comfort Database II (Comfort Database
II) [44] serves as our benchmark for exploring the impact of sub-
jective data biases and model predictive uncertainties on ML-based
thermal perception prediction models. The selection of this database
is primarily due to its considerable sample size and standardized
data format. The Comfort Database II is a culmination of systematic
data collection and harmonization from thermal comfort field studies
conducted globally over the past two decades. It encapsulates objective
measurements of indoor environments alongside their correspond-
ing ‘‘right-here-right-now’’ subjective evaluations, sourced from 160
buildings worldwide [44]. Including additional data from the original
ASHRAE RP-884 database [45], the Comfort Database II consists of
109,033 entries. Within the database are four subjective thermal met-
rics: thermal sensation (7-point), thermal comfort (6-point), thermal

preference (3-point), and thermal acceptability (2-point).
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Fig. 2. Overview of the proposed data-model integration framework for supporting reliable thermal perception predictions.
Fig. 3. Distributions of the four subjective perception metrics in the ASHRAE Global Thermal Comfort Database II post data preprocessing. The subjective perception metrics
include thermal sensation (7-point scale), thermal comfort (6-point scale), thermal preference (3-point scale), and thermal acceptability (2-point scale).
To refine the data in the Comfort Database II, this study excluded
any data entries that lacked records of the aforementioned six input
features and four subjective labels. Following these data cleaning pro-
cedures, the processed database contains around 7,600 data records.
Fig. 3 presents the post-processing distributions of the four subjective
perception metrics in the Comfort Database II. It reveals a notable
deficiency in certain perception classes within the dataset, such as the
5

+3 (hot) votes. In alignment with previous research [46], this study
discarded label categories that contain fewer than 100 data records
from the Comfort Database II to maintain robustness and validity in
data analysis.

In accordance with previous ML-based research [12], the authors fo-
cus on six input features, specifically clothing insulation (𝑐𝑙𝑜), metabolic
rate (𝑚𝑒𝑡), air temperature (𝑡𝑎), relative humidity (𝑟ℎ), mean radiant
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Fig. 4. Illustrations of the relationship between the four subjective thermal metrics in the Comfort Database II. Thermal comfort: from cold (–3) to hot (+3). Thermal preference:
ooler, no change, and warmer. Thermal comfort: from very uncomfortable (1) to very comfortable (6). Thermal acceptability: acceptable and unacceptable.
emperature (𝑡𝑟), air velocity (𝑣𝑒𝑙). Moreover, this study has integrated
our subjective perception labels, including thermal sensation (𝑇𝑆𝑉 ),

thermal preference (𝑇𝑃𝑉 ), thermal acceptability (𝑇𝐴𝑉 ), and thermal
comfort (𝑇𝐶𝑉 ). The thermal perception prediction models can be
defined as a mapping 𝑓 :

𝑦 = 𝑓 (𝑡𝑎, 𝑟ℎ, 𝑡𝑟, 𝑣𝑒𝑙, 𝑐𝑙𝑜, 𝑚𝑒𝑡) (1)

where 𝑦 is the subjective thermal perceptions.

3.2. Detection of subjective biases based on the multidimensional associa-
tion rule mining

Obtaining subjective perceptions from the occupants using a single-
question scale can hardly guarantee an accurate measurement. How-
ever, potential interconnections among thermal perception metrics of-
fer opportunities for cross-validation, thus enhancing our understand-
ing of human responses to thermal environments. For example, thermal
sensation reflects the subjective perception of the thermal environment
and directly influences thermal comfort. A neutral thermal sensation
generally indicates a state of high thermal comfort, while deviations
from neutral may lead to discomfort. Moreover, thermal comfort in-
fluences thermal acceptability, as occupants who are comfortable are
more likely to consider the environment acceptable.

To effectively detect subjective biases in thermal perceptions, this
study examines the M-ARM method that simultaneously considers the
intricate interrelationships of multiple subjective metrics. Our primary
assumption is that frequent association patterns, which represent com-
mon thermal perceptions among occupants, are indicative of typical
responses in a given thermal environment. Consequently, data points
that deviate significantly from these patterns are hypothesized to poten-
tially represent subjective biases in data collection from the statistical
point of view. However, this methodology carries inherent limitations.
Principally, the proposed method may inadvertently exclude valid but
non-typical or ‘‘hard-to-predict’’ data points. These rare responses,
while potentially representing actual thermal experiences, may not
conform to the most frequently observed patterns and, as a result,
could be filtered out. This poses a risk of narrowing the diversity and
richness of our dataset, potentially overlooking some unique thermal
perception experiences. Additionally, there is a possibility that the
enhanced performance of model predictions, observed post-filtering,
could be attributed to the removal of these non-typical data points
6

rather than a true reflection of overall trends in thermal perceptions.
This raises concerns about the method’s ability to capture the full
characteristics of thermal experiences, potentially skewing results to-
wards more diverse responses. Thus, considering these limitations is
essential to interpreting the results, particularly in terms of the range
and diversity of thermal perceptions captured in our analysis.

The proposed M-ARM method consists of three main steps: gener-
ating candidate association rules, computing support and confidence
measures, and filtering anomalous association rules for thermal per-
ceptions. To mitigate the risk of losing insightful data, our approach
includes a supplementary analysis of filtered data points, preserving the
comprehensiveness of the dataset.

3.2.1. Generating candidate association rules for thermal perceptions
The correlation outcomes illustrated in Fig. 4 expose potential sub-

jective biases intertwined with thermal perceptions. For instance, a
group of occupants demonstrates a rather paradoxical array of re-
sponses: they report feeling ‘‘cold’’ (thermal sensation), show a pref-
erence for ‘‘cooler’’ conditions (thermal preference), and express ‘‘very
comfortable’’ (thermal comfort), all while finding these concurrent ex-
periences ‘‘acceptable’’ (thermal acceptability). Such inconsistency and
conflicting thermal responses infuse a degree of noise and uncertainty
into ML models, which could obscure clear pattern recognition and
predictive accuracy.

The generation of candidate rules involves combining multiple sub-
jective perception metrics as antecedents, with a target metric serving
as the consequent. This step aims to uncover potential associations
between the distinct thermal perception metrics. An association rule
𝑅𝑖 is a logical expression structured as follows:

𝑅𝑖 ∶ 𝐴1 ∧ 𝐴2 ∧⋯ ∧ 𝐴𝑛 ⇒ 𝐶 (2)

where 𝐴𝑗 (𝑗 ∈ 1, 2,… , 𝑛) represents the antecedent metrics, and 𝐶
denotes the consequent metric.

In this study, each metric is denoted by a pair in the format
<attribute, value>. For instance, thermal sensation can be rep-
resented as <sensation, neutral>. To compute the anomalous
association rules, we designate the targeted metrics as the consequent
metrics 𝐶, while the other three serve as antecedent metrics 𝐴. As an
illustration, when the goal is to predict thermal sensation, a multidi-
mensional association rule 𝑅𝑖 can be expressed as: <preference, no
changes> ∧ <acceptability, acceptable> ∧ <comfort,
comfortable>⇒ <sensation, neutral>.
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3.2.2. Computing support and confidence measures for association rules
This study employs one-hot encoding to transform multilevel met-

rics into binary problems [47]. The transformation facilitates the in-
terpretation of relationships between distinct levels of categorical data.
Each distinct value of a quantitative metric is mapped to a boolean
attribute within the pair <attribute, value>, e.g., <no changes,
>.

Support (𝑆𝑢𝑝) and confidence (𝐶𝑜𝑛𝑓 ) measures for each candidate
ule are computed to quantify their significance. The 𝑆𝑢𝑝 of a rule
epresents the proportion of perception votes that include both the
ntecedent and the consequent of the rule. Rules with extremely low
𝑢𝑝 might be considered anomalous due to their infrequency and the
otential absence of significant patterns in the data. The 𝑆𝑢𝑝 of a rule
𝐴 ⇒ 𝐶) is defined as follows:

𝑢𝑝(𝐴 ⇒ 𝐶) = 𝑃 (𝐴 ∩ 𝐶) (3)

Confidence (𝐶𝑜𝑛𝑓 ) is the conditional probability 𝑃 (𝐶|𝐴) of a sub-
ective vote containing 𝐶 and 𝐴. Rules with very low 𝐶𝑜𝑛𝑓 may be
egarded as anomalous because they imply a weak association between
he antecedent and the consequent, possibly due to noise or data errors.
he 𝐶𝑜𝑛𝑓 of a rule (𝐴 ⇒ 𝐶) is defined as follows:

𝑜𝑛𝑓 (𝐴 ⇒ 𝐶) =
𝑃 (𝐴 ∩ 𝐶)
𝑃 (𝐴)

(4)

3.2.3. Filtering anomalous association rules for thermal perceptions
To effectively generate association rules, this study employs the

Apriori algorithm [48], a widely used method in ARM problems. The
authors define a very low 𝑆𝑢𝑝 threshold (i.e., 0.0001) to avoid missing
are rules [49].

Since frequent association patterns represent the common thermal
erceptions of occupants, data points diverging from these patterns may
ndicate potential data biases. For instance, a reported thermal response
hat aligns with more frequent patterns is less likely to be considered
n outlier, as it echoes the consistent perceptions of occupants in the
ataset. Based on the predefined 𝐶𝑜𝑛𝑓 threshold, the authors filter

out inconsistent and contradictory association patterns, retaining only
those that meet these criteria as common association rules.

Additionally, this study used the Chi-square test [50] to determine
if the consequent metrics are independent of the antecedent metrics at
the selected significance level. For association rules, the null hypothesis
typically posits that the items in the rule are independent. If 𝜒2(𝐴 ⇒
𝐶) > 𝑡𝛼(𝑛), it suggests that the observed co-occurrence of the rule might
be the potential subjective bias. The implementation of the proposed
method is described in Algorithm 1.

𝜒2 =
𝑐
∑

𝑖=1

𝑟
∑

𝑗=1

(𝑂𝑖𝑗 − 𝐸𝑖𝑗 )2

𝐸𝑖𝑗
(5)

where 𝑂𝑖𝑗 is the observed frequency, and 𝐸𝑖𝑗 is the expected frequency
for each rule.

3.3. Evaluating and calibrating model predictive uncertainty of thermal
perception predictions

For any input instances 𝐱 ∈  , the probabilistic ML classifier outputs
class label 𝑖 ∈ {1,… , 𝑘} and an associated probability (also known

as confidence) 𝑐, where 𝑐 = max(𝑓 (𝐱)) and 𝑖 = argmax𝑓 (𝐱). Here,
the confidence 𝑐 for a given input 𝐱 is the maximum value of the
function 𝑓 (𝐱). If 𝑓 (𝐱) produces a probability distribution over classes
i.e., 𝑓 (𝐱) = [𝑝1, 𝑝2,… , 𝑝𝑘] where each 𝑝𝑖 is the probability of class
), then 𝑐 is indeed the maximum probability among all classes. The
lassifier assigns to the input instance 𝐱 the class label 𝑖 with the highest
robability.

A classifier is considered confidence-calibrated if the predicted prob-
bility matches the observed accuracy for the most likely class to be
redicted. For example, given 100 predictions, each with a predicted
robability of 0.8, we expect that 80 should be correctly classified.
7

Algorithm 1 Detect anomalous associated thermal perception patterns
with Chi-square filtering
Input: Comfort Database II 𝐷, minimum support threshold min_sup,

confidence threshold conf, significance level 𝛼
utput: Anomalous associated thermal perception patterns

1: Initialize candidate set 𝐶1 by scanning 𝐷 and counting support for
individual metrics

2: 𝑘 ← 1
3: while new associated thermal perception patterns are found do
4: Generate associated thermal perception patterns 𝐿𝑘 from can-

didate set 𝐶𝑘, where Sup(𝑋) ≥ min_sup for all 𝑋 ∈ 𝐿𝑘

5: Generate candidate set 𝐶𝑘+1 from 𝐿𝑘 using the Apriori property
[48]:

Join: Pairwise join 𝐿𝑘 with itself to generate (𝑘 + 1)-item
candidate patterns

Prune: Remove candidates with any (𝑘 + 1) − 1 subset not in 𝐿𝑘

6: Calculate the support and confidence of each candidate in 𝐶𝑘+1
by scanning the Comfort Database II 𝐷

7: Increment 𝑘: 𝑘 ← 𝑘 + 1
8: end while
9: for each association rule 𝐴 ⇒ 𝐶 in ⋃𝑘

𝑖=1 𝐿𝑖 do
10: Calculate the observed frequency 𝑂𝑖𝑗 and the expected frequency

𝐸𝑖𝑗

11: Calculate 𝜒2 =
∑𝑐

𝑖=1
∑𝑟

𝑗=1
(𝑂𝑖𝑗−𝐸𝑖𝑗 )2

𝐸𝑖𝑗

12: if 𝜒2(𝐴 ⇒ 𝐶) > 𝑡𝛼(𝑛) then
3: Mark the association rule 𝐴 ⇒ 𝐶 for further examination
4: end if
5: end for
6: return Anomalous thermal perception patterns from ⋃𝑘

𝑖=1 𝐿𝑖

More formally, a probabilistic classifier is confidence-calibrated if for
any confidence level 𝑐 ∈ [0, 1]

𝑃 (𝑌 = 𝑖|𝑓𝑖(𝐱) = 𝑐) = 𝑐 (6)

Here, if the classifier gives a probability 𝑐 to class 𝑖 for input 𝐱, then
the actual likelihood that 𝐱 belongs to class 𝑖 should indeed be 𝑐. So, for
example, if the classifier is 70% confident that 𝐱 belongs to class 𝑖, then,
over many such predictions, around 70% of them should be correct.

3.3.1. Assessing model calibration performance for existing ML-based ther-
mal perception prediction models

Reliability diagrams can assess model calibration performance by
categorizing model predictions into bins based on the confidence score
associated with each predicted class. Within each bin, the average
confidence and accuracy are computed and plotted. Ideally, a well-
calibrated model will exhibit points close to the diagonal line in the
reliability diagram, indicating equal accuracy and confidence.

Fig. 5 presents the reliability diagrams of various ML models for
predicting occupant thermal perceptions using the Comfort Database
II, with predicted labels and confidence associated with the highest-
scoring class. Deviations from the perfect diagonal line, denoted as
‘‘gaps’’, indicate miscalibration. Larger gaps correspond to a more
significant miscalibration. Overconfidence arises when the model’s pre-
diction confidence surpasses actual accuracy (i.e., the red bar falls
below the diagonal), leading to more false positives. Conversely, under-
confidence occurs when the model’s prediction confidence is below
actual accuracy (i.e., the red bar goes above the diagonal), resulting
in more false negatives. The results reveal that most ML-based thermal
perception prediction models experience some degree of miscalibration
and are prone to poor calibration. Uncalibrated predicted probabilities
of occupant thermal needs might guide incorrect HVAC control actions,

causing occupant discomfort and energy waste.
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Fig. 5. Confidence-reliability diagrams for un-calibrated ML methods of thermal preference predictions on the dataset. Note that bins corresponding to confidences less than 1∕10
will be empty. SVM: Support Vector Machines; DT: Decision Trees; KNN: K-Nearest Neighbors; LR: Logistic Regression; MLP: Multi-Layer Perceptron; NB: Naïve Bayes. For more
detailed implementation information, refer to Section 4.
3.3.2. Calibrating model predictive uncertainties
The observed miscalibration performance of ML methods (see Fig. 5)

highlights the need to improve their prediction reliability for guiding
reliable HVAC control actions.

Classifier calibration aims to adjust the classifier’s output to more
closely reflect the true probability of correctness. This post-hoc process
typically involves transforming an uncalibrated probabilistic classi-
fier using a hold-out validation dataset to learn a calibration map
𝑢 ∶ R𝑘 → R𝑘 [42]. The calibration methods investigated in this
study include Platt scaling [41], isotonic calibration [35], Beta calibra-
tion [42], Bayesian Binning into Quantiles (BBQ) [43], Temperature
scaling (Temp.) [51], and Gaussian Process calibration (GPcalib) [21].

Given the multi-class nature of certain thermal perception metrics
(e.g., thermal preference, thermal sensation, and thermal comfort), this
study uses a one-vs-all approach [35] to extend binary calibration
methods (e.g., Platt scaling [41] and isotonic calibration [35]) to
multiclass problems. The calibrated probabilities for each class are
predicted separately, and post-processing is performed to normalize
their predictions. The calibration processes for each method are as
follows:

• Platt scaling [41] fits a sigmoid function to the model scores
obtained from the calibration set. The label predicted by the
underlying model is treated as the positive class, whereas all other
labels are treated as the negative class. Given an uncalibrated
probability estimation score 𝑐, the predictive function is:

𝑢(𝑐;𝑤, 𝑏) = (1 + exp(−𝑤𝑐 − 𝑏))−1 (7)

where 𝑤, 𝑏 ∈ R are scaling parameters optimized via maximum
likelihood in the validation set.

• Isotonic regression [52] fits the piecewise isotonic (monotonically
increasing) function 𝐼 to transform uncalibrated outputs:

𝑢(𝑐; 𝐼) = 𝐼(𝑐) + 𝜖 (8)

where 𝜖 is the model bias. This function aims to minimize the
8

square loss between the predicted and observed probability.
• Beta calibration [42] defines a family of calibration maps based
on the likelihood ratio between two Beta distributions. The pre-
dictive function is expressed as:

𝑢(𝑐;𝑤1, 𝑤2, 𝑏) = (1 + exp(−𝑤1 ⋅ ln 𝑐 −𝑤2 ⋅ ln(1 − 𝑐) − 𝑏))−1 (9)

where 𝑤1, 𝑤2, 𝑏 ∈ R are the scaling parameters.
• Bayesian Binning into Quantiles (BBQ) [43] incorporates multiple

binning models and uses a Bayesian score function 𝑆 to weigh the
accuracy in each bin. The predictive function is expressed as:

𝑢(𝑐;𝑆) =
𝑆(𝑚𝑖) ⋅ 𝑃𝑚𝑖

(𝑐)
∑𝑁

𝑗=1 𝑆(𝑚𝑗 )
(10)

where 𝑁 represents the total number of binning models, and
𝑃𝑚𝑖

(𝑐) is the estimated probability by the binning model 𝑚𝑖 for
the uncalibrated classifier output 𝑐.

• Temperature scaling (Temp.) [51], an extension of Platt scaling,
utilizes a single scalar parameter, known as ‘‘temperature’’ (𝑡 ∈
R), for all classes. Let 𝐩 = 𝑓 (𝐱) represent the predicted probability
vector for a classifier 𝑓 . The predictive function is formulated as:

𝑢𝑗 (𝐩; 𝑡) =
exp(−𝑡 ⋅ logit𝑝𝑗 )

∑𝑘
𝑗=1 exp(−𝑡 ⋅ logit𝑝𝑗 )

,∀𝑗 ∈ 1,… , 𝑘 (11)

• Gaussian Process calibration (GPcalib) [21] models the relation-
ship between predicted and true class probabilities through a
Gaussian process. This method defines a Gaussian process prior
to the latent function as 𝑔(𝑝𝑗 ) = (𝑝𝑗 ;𝜇,𝐾), with 𝜇 as the mean
function and 𝐾 as the kernel. The predictive function is given by:

𝑢𝑗 (𝐩;𝜇,𝐾) =
exp(𝑔(𝑝𝑗 ))

∑𝑘
𝑗=1 exp(𝑔(𝑝𝑗 ))

,∀𝑗 ∈ 1,… , 𝑘 (12)

The calibration performance, visualized by the bin distributions in
the reliability diagram), is subject to several influential factors:

• Classifier characteristics: A classifier might generate probabilities
concentrated around specific values. For example, a classifier
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Table 2
Parameter sets of grid search for the ML algorithms.

Algorithms Parameter sets Parameter range

SVM Regularization parameter 0.1, 1, 10
Kernel Linear, RBF
Kernel coefficient scale, 1/n_features

MLP Hidden layer sizes 50, 100
Alpha 0.0001, 0.001

RF Estimators 100, 500, 1000
Max depth none, 10, 30
Min samples split 2, 5, 10

DT Criterion Gini, Entropy, Log loss
Max depth none, 10, 30
Min samples split 2, 5, 10

KNN Neighbors 3, 5, 7
Weights Uniform, distance
Algorithms BallTree, KDTree, brute-force search

Gaussian NB Variance of smoothing 1𝑒−9

LR Regularization parameter 0.1, 1, 10
Penalty L1, L2, both L1 and L2, none
Solver ‘‘newton-cg’’, ‘‘lbfgs’’, ‘‘sag’’, ‘‘saga’’

predominantly predicting with extreme confidences (e.g., close to
0 or 1) may leave several intermediate bins unoccupied.

• Calibration method characteristics: Calibration methods may ex-
hibit varying decisiveness levels. Some calibration methods might
be more conservative, adjusting probabilities closer to a midpoint.
In contrast, other methods might be more assertive, pushing
predictions towards the extremes. This results in distinct bin
distribution patterns in their corresponding reliability diagrams.

• Data characteristics: The nature of calibration data, such as
dataset size and distribution, affects the calibration performance.

. Experimental setup

This study employs seven widely used ML algorithms: SVM, MLP,
F, DT, KNN, NB, and LR, for predicting thermal perceptions. A 5-fold
ested cross-validation approach is employed, wherein the outer loop
anages dataset splits for testing, and the inner loop conducts a grid

earch for hyperparameter tuning on the training data. Table 2 presents
he parameter sets and ranges utilized for grid search optimization of
he ML algorithms.

As the actual thermal responses are unknown, this study utilizes an
ndirect indicator to evaluate the effectiveness of the proposed method.
ollowing previous studies [19], the authors compare the prediction
ccuracy performance before and after filtering biased data. Upon
he removal of biased data, this study anticipates enhanced accuracy
erformance from the ML-based classifiers.

Due to the imbalanced classes in the Comfort Database II (as illus-
rated in Fig. 3), this study chose the weighted F1 score to evaluate the
roposed algorithm’s effectiveness by following previous studies [53,
4]. The F1 score for class 𝑖 is calculated as follows:

1𝑖 =
2 × Precision𝑖 × Recall𝑖

Precision𝑖 + Recall𝑖
(13)

here Precision𝑖 =
TP𝑖

TP𝑖+FP𝑖
and Recall𝑖 =

TP𝑖
TP𝑖+FN𝑖

. Here, TP𝑖, FP𝑖, and
N𝑖 represent the number of True Positives, False Positives, and False
egatives for class 𝑖, respectively.

The weighted F1 score is the weighted average of F1 scores across
ll classes, computed as follows:

eighted F1 =
𝑘
∑

𝑖=1
𝑤𝑖 × F1𝑖 (14)

here 𝑤𝑖 is the weight assigned to class 𝑖, computed as the proportion
9

f samples in class 𝑖. s
Fig. 6. Illustrations of the top-10 frequent and infrequent association patterns between
four subjective perception metrics (thermal sensation–thermal preference–thermal
acceptability–thermal comfort). The nodes show the categorical attributes of four
subjective metrics. The edge shows the weights between these nodes. Edge weights
= 𝐶𝑜𝑛𝑓 × 100.

5. Results and discussions

This section introduces the implementation and assessment of the
proposed method. The authors conduct extensive experiments designed
to (1) analyze potential subjective data biases within the Comfort
Database II using the developed M-ARM algorithm, (2) investigate the
impact of these subjective biases on thermal perception predictions,
and (3) evaluate the effectiveness of state-of-the-art calibration meth-
ods in enhancing reliability performance of existing ML-based thermal
perception prediction models.

5.1. Impacts of subjective biases on thermal perception predictions

This study uncovers potential instances of subjective biases within
the Comfort Database II through the proposed M-ARM approach. Fig. 6
presents the ten most and least frequent association rules, with circles
of different colors denoting the four thermal perception metrics: ther-
mal sensation, preference, acceptance, and comfort. Fig. 6(a) displays
the top-10 most frequent association rules, with the values along
each edge indicating the maximum confidence (𝐶𝑜𝑛𝑓 ) between two
metrics. For example, the association rule with the 𝐶𝑜𝑛𝑓 of 40.6% is
<‘‘comfortable’’, ‘‘acceptable’’, ‘‘no change’’, ‘‘neu
tral’’>. In contrast, Fig. 6(b) shows the top-10 least frequent as-
ociation rules, with values along each edge indicating the minimal
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Fig. 7. The impacts of subjective bias on the weighted F1-score performance of ML-based thermal perception prediction models.
Fig. 8. Density distributions of six influential factors in raw and filtered datasets. The factors include clothing insulation (𝑐𝑙𝑜), metabolic rate (𝑚𝑒𝑡), air temperature (𝑡𝑎), relative
umidity (𝑟ℎ), mean radiant temperature (𝑡𝑟), and air velocity (𝑣𝑒𝑙). The p-values are derived from the Kolmogorov–Smirnov test [55] on raw and filtered datasets.
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onfidence between two metrics. The M-ARM algorithm detects several
ssociated responses with extremely low 𝐶𝑜𝑛𝑓 , considering these as
nstances of subjective biases. For example, the occupants who simul-
aneously chose <‘‘very uncomfortable’’, ‘‘acceptable’’,
‘warmer’’, ‘‘neutral’’> are associated with significantly low
𝑜𝑛𝑓 values (i.e., 0.03%).

This study then investigates the benefits of implementing confidence
hresholds. Initially, the model evaluates the test set without a 𝐶𝑜𝑛𝑓
hreshold, after which a 5% 𝐶𝑜𝑛𝑓 threshold is applied. The impacts of
his strategy are analyzed by observing changes in model prediction
erformance (measured by weighted F1 score) across four aspects
f thermal perceptions: thermal preferences, sensations, comfort, and
cceptability.

As seen in Fig. 7, all ML methodologies show improvements in their
iscrimination performance following the filtering of identified biased
abels. More specifically, the RF model performs better in predicting
hermal preferences, achieving a weighted F1 score of 61.47%. This
10

f

core represents an average improvement of 4.29% after filtering biased
ata. On the other hand, the KNN model yields the highest weighted F1
core for thermal sensation prediction, at 39.49%, marking an average
mprovement of 1.11% after filtering biased data. Furthermore, in
redicting thermal comfort, the DT model excels, with a weighted F1
core of 46.39%, indicating an average improvement of 4.01% follow-
ng the removal of biased data. Similarly, for thermal acceptability
rediction, the DT model again achieves the highest weighted F1 score
t 85.90%, along with an average improvement of 5.53% after filtering
iased data. These results underline the effectiveness of the M-ARM
pproach in examining the underlying anomalous associations in the
ata and provide statistical support to the strategy of removing data
haracterized by subjective biases.

Fig. 8 shows the density distributions of six influential factors,
ncluding clothing insulation, metabolic rate, air temperature, relative
umidity, mean radiant temperature, and air velocity, in raw and
iltered datasets. The p-values derived from the Kolmogorov–Smirnov
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Table 3
Model reliability performance (measured by Average 𝐸𝐶𝐸) of ML-based methods for
thermal preference predictions using different calibration methods. The lowest ECE per
ML model is highlighted in bold.

Models Uncal. Platt Isotonic Beta BBQ Temp. GPcalib

RF .0753 .0709 .0699 .0748 .0644 .0765 .0749
SVM .0619 .0557 .0676 .0626 .0625 .0624 .0578
MLP .0875 .0647 .0724 .0722 .0643 .0779 .0728
DT .1788 .0720 .0650 .0716 .0789 .1149 .1795
KNN .1056 .0504 .0485 .0744 .0816 .0451 .1072
NB .1996 .0672 .0552 .0617 .0386 .0803 .0856
LR .0745 .0700 .0684 .0748 .0610 .0850 .0751

test [55] offer a quantitative measure of the difference between the
two distributions. The results indicate that the proposed method did
not change the distributions of model inputs.

5.2. Assessment of model calibration performance on thermal perception
predictions

This subsection investigates the effectiveness of state-of-the-art cal-
ibration methods in refining model predictive uncertainties. Consistent
with previous research [21,43], this study uses the ECE score as our
primary metric for evaluating the calibration performance of the classi-
fiers, where lower ECE values signify superior performance. The ECE is
derived by partitioning predictions into 𝑀 fixed bins (each bin having
a size of 1∕𝑀) and subsequently determining the absolute difference
between real and predicted probabilities for each bin, as expressed as
follows:

𝐸𝐶𝐸 =
𝑀
∑

𝑚=1
𝛥(𝑚) ⋅ |𝑦𝑚 − 𝑝𝑚| (15)

where 𝛥(𝑚) is the empirical fraction of all instances falling within bin
𝑚, while 𝑦𝑚 and 𝑝𝑚 are the actual and predicted probability in the bin
𝑚.

Of the four thermal perception metrics discussed, thermal prefer-
ence serves as a direct indicator for the preferred control adjustments of
the HVAC system in response to thermal environments [18]. Consistent
with prior research [39], this study evaluates and compares the calibra-
tion performance of various methods, using the prediction of thermal
preference as an example in the following analysis.

Table 3 presents the average ECE scores (with bins 𝑀 = 10)
both pre- and post-calibration for predicting thermal preference using
diverse methods, including Platt scaling (Platt), Isotonic regression
(Isotonic), Beta calibration (Beta), Bayesian Binning into Quantiles
(BBQ), Temperature scaling (Temp.), and Gaussian Process calibration
(GPcalib). The results show that most ML models exhibit some degree
of miscalibration, with ECE generally falling within the range of 6%
to 20%. Among uncalibrated models (Uncal.), SVM outperforms others
with an ECE score of 0.0619, while NB displays the least satisfactory
performance with a score of 0.1996.

Further analysis indicates that employing calibration methods can
effectively enhance the reliability performance of various ML models in
predicting thermal perceptions. For example, the BBQ calibration yields
the lowest ECE score for RF (0.0644), MLP (0.0643), and LR (0.0610).
Platt calibration proves the most efficient for SVM, resulting in an ECE
score of 0.0557. Isotonic calibration demonstrates the best performance
for DT with a score of 0.0650, while Temp. method is most effective
for KNN, with an ECE score of 0.0451. The most optimal combination
comprises the NB model and BBQ calibration, attaining the minimum
ECE score of 0.0386, thereby indicating an improvement of 0.1610.
Conversely, the DT model combined with the GPcalib calibration ex-
hibits the highest ECE score of 0.1795, signaling inadequate calibration
performance.

Fig. 9 displays class-specific reliability diagrams for both calibrated
11

and uncalibrated test sets. The results show that uncalibrated models r
Table 4
ECE performance of classifiers and calibration methods across different
dataset sizes for thermal preference prediction. For each classifier, we
show the mean performance of all calibration methods using differ-
ent dataset sizes. For each calibration method, we show the mean
performance of all classifiers using different dataset sizes. The lowest
ECE per classifiers and calibration methods on different dataset sizes is
highlighted in bold.

Methods 10% 40% 70% 100%

RF .0872 .0796 .0745 .0726
SVM .0720 .0675 .0640 .0615
MLP .0783 .0735 .0727 .0731
DT .1475 .1198 .1171 .1086
KNN .0775 .0734 .0736 .0732
NB .1050 .1006 .0982 .0840
LR .0824 .0753 .0722 .0726

NoCal .1361 .1187 .1181 .1119
Platt .0736 .0655 .0668 .0644
Isotonic .0913 .0729 .0686 .0639
Beta .0726 .0665 .0648 .0703
BBQ .0639 .0651 .0683 .0648
Temp. .0852 .0834 .0788 .0774
GPcalib .1273 .1172 .1108 .0932

tend to be overconfident (i.e., predicted probability > observed frequency)
hen predicting ‘‘cooler’’ and ‘‘warmer’’ classes, while under-confident

i.e., predicted probability < observed frequency) for the ‘‘no change’’
lass. Calibration methods, such as isotonic regression, Temperature
caling, and BBQ, deliver more reliable confidence estimates, leading
o better-calibrated bins. Such refined calibration enhances model pre-
iction transparency, thereby bolstering confidence in ML models [23].
urthermore, these refined uncertainties can greatly aid HVAC control
ecisions. By considering class priors (like warm or cold) and weighing
isclassification repercussions (such as energy use or user discom-

ort), calibrated models can adeptly navigate objectives related to user
omfort, energy efficiency, or air quality [24–26].

.3. Effects of dataset size

The authors first explore the interplay between dataset size and
he biased data based on predefined 𝐶𝑜𝑛𝑓 thresholds, as demonstrated
n Fig. 10. Subsets of the dataset, comprising 10%, 40%, 70%, and
00% of the total data, were used to evaluate this relationship. The
esults reveal that the prediction performance of ML-based models
enerally improves as dataset size increases. This observation supports
he idea that larger datasets offer more comprehensive information
or training ML algorithms, allowing them to learn more accurate and
obust representations of the underlying patterns within the data.

Moreover, the observed improvement in the prediction performance
f ML models suggests that the elimination of biased data, despite
otentially reducing the volume of training data, does not critically
iminish the overall information content within the dataset. More
pecifically, the best-performing algorithm is RF, with a weighted F1
core of 61.89% when utilizing 100% of the filtered dataset. These
indings highlight the importance of removing biased data in the con-
ext of thermal perception datasets for improving model predicting
erformance.

This study also investigates the effects of dataset sizes on the
alibration performance of different calibration methods. As presented
n Table 4, the results indicate that the average ECE performance of
ll calibration methods and ML-based classifiers tends to decrease as
he dataset size increases, implying that larger datasets generally result
n better model calibration performance. Among the classifiers, SVM
onsistently exhibits the best calibration performance across all dataset
izes, outperforming other classifiers in terms of lower average ECE val-
es. KNN and MLP follow with relatively better performance compared
o the other classifiers. On the other hand, DT and NB classifiers display

elatively poorer calibration performance, as evidenced by their higher
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Fig. 9. Class-wise reliability diagrams for ML-based thermal preference prediction methods pre- and post-calibration.
average ECE values across all dataset sizes. RF and LR classifiers present
moderate calibration performance, with average ECE values between
the top-performing (SVM, RF, MLP) and lower-performing (DT, NB)
classifiers.

Regarding calibration methods, the BBQ method achieves the lowest
ECE for smaller dataset sizes (10% and 40%), suggesting its robustness
even when working with limited data. However, as the dataset size
increased to 70% and 100%, the Beta calibration method showed
improved performance, demonstrating the lowest ECE among the cali-
bration methods at 70%. On the contrary, the GPcalib displays higher
ECE values across all dataset sizes, partially due to its inferior cal-
ibration performance on the DT (see Table 3). Platt, Isotonic, and
Temp. calibration methods demonstrate moderate calibration perfor-
mance. These findings emphasize the importance of selecting appro-
priate methods based on specific classifiers and dataset characteristics
to achieve optimal calibration performance.
12
5.4. Effects of subjective data biases on model calibration performance

This subsection analyzes the effects of subjective biases on model
reliability by comparing the ECE performance of various ML methods
using raw and filtered datasets. The filtered dataset is generated by
removing instances identified as subjective data biases.

Table 5 presents the ECE scores for the seven ML-based models.
The results reveal that the ECE performance varies between models
using raw and filtered datasets. Notably, the KNN model demonstrates
a significant decrease in ECE score, from 0.1056 in the raw dataset to
0.0887 in the filtered dataset, signifying a considerable improvement in
the model’s reliability after removing instances influenced by subjective
biases. This indicates that the KNN model is sensitive to biased data and
may produce unreliable predictions when trained on biased datasets.
Similarly, the ECE scores for SVM, MLP, DT, NB, and LR models
decrease after filtering, with values changing from 0.0619 to 0.0599,
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Fig. 10. Effects of subjective bias on thermal preference predictions using different training dataset sizes (10%, 40%, 70%, and 100%).
Table 5
ECE performance (NoCal) of various ML methods for predicting thermal preference on
the raw and filtered datasets.

Dataset Models

RF SVM MLP DT KNN NB LR

Raw .0753 .0619 .0875 .1788 .1056 .1996 .0745
Filtered .0857↑ .0599↓ .0756↓ .1754↓ .0887↓ .1989↓ .0660↓

Note: ↑ indicates the ECE increases after filtering. ↓ indicates the ECE score decreases
after filtering.

0.0875 to 0.0756, 0.1788 to 0.1754, 0.1996 to 0.1989, and 0.0745 to
0.0660, respectively. These decreases suggest that the models become
more reliable after removing instances affected by subjective biases, al-
though the improvement is less significant than the one observed in the
NB model. However, the RF models exhibit increased ECE scores post-
filtering, with values changing from 0.0753 to 0.0857. This suggests
that the RF models become less reliable after eliminating subjective
biases, possibly because of the loss of beneficial information.

In conclusion, our analysis demonstrates that subjective biases can
significantly affect model reliability in predicting thermal perceptions.
The impact depends on the specific ML method employed, and some
models are more sensitive to biased data than others. This highlights
the importance of addressing subjective biases in data collection and
preprocessing, particularly when working with highly sensitive models
to noise and bias. Furthermore, the results emphasize the need to
carefully choose the most appropriate ML methods when working with
potentially biased datasets to ensure the reliability and validity of the
model results.

6. Limitations and future work

This study presents several limitations that need to be addressed
in future research. First, our investigation relies exclusively on data
from the ASHRAE Global Thermal Comfort Database II. Despite being
the most comprehensive thermal comfort database currently available,
13

numerous field studies are inevitably not included in this database. As
such, future research intends to verify the effectiveness of the proposed
method using additional field datasets.

The second limitation pertains to our method to identify subjective
biases in thermal perception responses. We underscore the necessity
of accounting for these biases in developing ML-driven models for
predicting thermal perceptions. However, due to the absence of ground-
truth benchmarks, subjective data biases, characterized by their rarity
or deviation from common patterns, may represent unique yet genuine
thermal experiences. Their exclusion poses a risk of oversimplifying
the thermal perception landscape and could lead to a loss of valuable
insights, underscoring a gap in the comprehensiveness of our dataset.
Furthermore, we must consider the possibility that the observed en-
hancement in the performance of our ML models may be, in part, a
consequence of excluding non-typical or ‘‘hard-to-predict’’ data points.
This consideration is particularly crucial in the absence of established
ground-truth benchmarks for thermal perceptions, which leaves open
questions regarding the optimal strategies for collecting and interpret-
ing subjective data with high measurement validity and reliability.
One way to mitigate these risks is to implement a hybrid approach
that combines the frequent association pattern methodology with a
secondary analysis of the filtered-out data points. This dual analysis
allows for identifying non-typical yet significant thermal experiences
that may offer valuable insights into less common but still important
occupant responses. The current studies are limited to analyzing six
relevant factors for the filtered data points. Future research should
incorporate a broader array of features to maintain the dataset’s quality
while preserving its completeness. In light of these limitations, our
study aims to spotlight the imperative of ensuring subjective data
reliability in thermal perception collection and modeling processes
rather than providing prescriptive solutions.

Finally, this study systematically evaluated the calibration perfor-
mance of existing ML-based thermal perception models using ECE
scores and reliability diagrams. The results highlighted model miscal-
ibration in the current models. By employing the latest calibration
methods for seven ML-based models, our analysis demonstrates that
calibration methods can effectively enhance the model’s reliability
performance in predicting thermal perceptions. However, the optimal
calibration method may differ depending on the underlying models
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and dataset characteristics. Future research could explore potential
improvements in calibration techniques to further improve model re-
liability performance. Additionally, considering the uncertainties in
calibrated model predictions, subsequent studies should aim to de-
velop an intelligent control algorithm. This algorithm would consider
the misclassification costs tied to model predictions to ensure guar-
anteed HVAC system performance. For instance, in instances of low
prediction confidence, the algorithm could either seek feedback from
occupants [56] or adopt more conservative control measures [25].
However, a detailed implementation of this control algorithm falls
outside the scope of the present discussion.

7. Conclusions

Occupant thermal comfort is vital in building designs and opera-
tions, affecting energy efficiency and occupant well-being. However,
ML-based thermal perception prediction encounters issues with sub-
jective biases and model predictive uncertainties. Using the reliability
diagrams and ECE scores, the authors reveal that most ML-based ther-
mal comfort prediction models exhibit some miscalibration and tend
to suffer from poor calibration. This study introduces a data-model
integration method that calibrates the prediction uncertainties of ML-
based thermal perception models. The method presents the M-ARM
algorithm to detect potentially biased human responses by leveraging
the interrelationship between subjective metrics such as thermal sensa-
tion, comfort, acceptance, and preference. Using the ASHRAE Comfort
Database II, this study examines the effects of subject bias and the
effectiveness of the proposed M-ARM algorithm. The results show that
the seven ML approaches exhibit an improved discrimination perfor-
mance (measured by the weighted F1 score), and the proposed method
improves the prediction performance of thermal sensation, thermal
comfort, thermal preference, and thermal acceptability by up to 1.01%,
4.01%, 4.11%, and 5.53%, respectively. To further refine model cali-
bration performance, the authors applied six calibration methods, Platt,
isotonic, Beta, BBQ, Temp., and GPcalib, to the ML models. The results
emonstrate that these calibration methods can improve the reliability
f various ML approaches in predicting thermal preferences, with a
aximum ECE improvement of 0.1610 (80.66% reduction in the un-

alibrated ECE score). The proposed framework delivers more reliable
hermal perception predictions by integrating the M-ARM algorithm
o address subjective biases and applying state-of-the-art calibration
ethods for model predictive uncertainties. Furthermore, the presented

tudy investigated the impacts of dataset size on the calibration per-
ormance of various methods. The BBQ method performed best with
maller datasets (10% and 40%), indicating its robustness with data
hortage. However, as the dataset size increased (70% and 100%), Beta
alibration demonstrated superior performance, indicating its scalabil-
ty for larger datasets. This will ultimately guide the development of
ncertainty-informed control strategies for optimizing occupant ther-
al comfort in buildings. Future studies will validate the effectiveness

f the proposed method using more field datasets and explore poten-
ial improvements in calibration techniques to further enhance model
eliability performance.
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